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Chapter1
Résumé en français

Chapter content
1.1 Motivations de cette thèse . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Les applications diverses de la programmation quadratique . . . . . . . 1
1.1.2 Nécessité de solutions polyvalentes et fiables . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Résumé des contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Organisation de cette thèse . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Publications associées et logiciels . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivations de cette thèse

1.1.1 Les applications diverses de la programmation quadratique

La programmation quadratique (PQ) convexe vise à optimiser une fonction quadratique convexe
tout en respectant des contraintes linéaires. Elle représente l’une des formes fondamentales de la
programmation non linéaire convexe, et son importance est évidente en tant que pierre angulaire
dans la boîte à outils moderne de l’ingénierie. Ci-dessous, nous présentons une compilation
non exhaustive des applications de la programmation quadratique dans différents domaines
scientifiques, suivie d’un résumé plus détaillé de son rôle en robotique et en apprentissage
automatique.

Applications en Science

La programmation quadratique trouve une utilité particulière dans la résolution de tâches
exigeant l’allocation de ressources (par exemple, la conception de structure en ingénierie, le
contrôle de centrale énergétique, la planification économique, l’optimisation de portefeuille) et la
reconstruction de données (par exemple, via des techniques de filtrage). Quelques applications
exemplaires sont résumées ci-dessous. Le lecteur intéressé peut consulter davantage de références
dans l’aperçu bibliographique suivant [Gould and Toint, 2000].

Conception de structure en ingénierie. La programmation quadratique joue un rôle essen-
tiel pour concevoir des structures ou systèmes d’ingéniérie. Elle facilite notamment l’identification
des paramètres de conception optimaux en minimisant une fonction objective quadratique tout
en respectant des contraintes de structure [Deb, 2012,Shi et al., 2016,Zhou et al., 2012].
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Traitement du Signal. La programmation quadratique est utilisée en traitement du signal,
par exemple dans les techniques visant sa reconstruction ou son filtrage [Abdelmalek, 1983,Adams
et al., 1994,Hassanien et al., 2008,Nordebo et al., 1994,Bitmead et al., 1986,Simon and Simon,
2006,Mattingley and Boyd, 2010].

Allocation de Ressources. La programmation quadratique aide à identifier des allocations
optimales sous des contraintes de ressources. Des exemples notables couvrent notamment
l’optimisation de la génération d’énergie [Momoh et al., 1999,Nanda et al., 1989,Zhang et al.,
2018], l’optimisation de la logistique [Liu and Zhang, 2016,Matskul et al., 2021], la planification
économique et managériale [SHIM, 1983, Reid and Hasdorff, 1973, Rao, 1961, Fan and Zhang,
1998, McCarl et al., 1977], la planification agricole ou la sélection des cultures [McFarquhar,
1961,Wiens, 1976,Marques et al., 2010], et l’optimisation de portefeuille pour la réduction des
risques en finance [Markowitz, 1952,Cornuejols and Tütüncü, 2006,Boyd et al., 2017,Boyd and
Vandenberghe, 2004].

Applications en Robotique

L’optimisation est devenue un élément clé pour simplifier et systématiser la programmation
de mouvements de robots complexes. De nos jours, de nombreux problèmes robotiques, de la
simulation au contrôle, en passant par la planification et l’estimation, sont formulés sous forme
de problèmes d’optimisation.

La programmation quadratique est utilisée en robotique pour la planification et le contrôle
des mouvements. Elle permet de trouver la trajectoire optimale ou les entrées de contrôle qui
minimisent une fonction de coût quadratique tout en respectant les dynamiques et les contraintes
du système.

Notamment, elle permet entre autres de traiter la modélisation de contact unilatéral sans
frottement [Redon et al., 2002], la dynamique directe sous contrainte [Carpentier et al., 2021], la
cinématique et la dynamique inverses pour le contrôle de tâches [Escande et al., 2014,Herzog
et al., 2016,Kuindersma et al., 2016], et la locomotion bipède [Wieber, 2006a,Carpentier and
Wieber, 2021,Wensing et al., 2022]. La programmation quadratique est également couramment
utilisé comme sous-routine pour résoudre des problèmes plus complexes, par exemple, dans le
contexte de problèmes de contrôle optimal contraints [Leineweber et al., 2003, Houska et al.,
2011,Tassa et al., 2014,Jallet et al., 2022a].

Applications en Apprentissage Automatique

Dans le domaine de l’apprentissage automatique, la programmation quadratique trouve des
applications dans une gamme d’algorithmes dédiés à la résolution de problèmes d’ajustement.
Nous détaillons ci-dessous quelques exemples marquants de cette utilisation.

Les Machines à Vecteurs de Support (SVM) ont gagné une reconnaissance substantielle
pour leur efficacité dans les tâches de classification. La programmation quadratique est un
outil fondamental dans les SVM [Cortes and Vapnik, 1995], car elle est utilisée pour déterminer
l’hyperplan optimal qui sépare efficacement les points de données de différentes classes tout
en maximisant la marge entre ces classes. Cette approche contribue à obtenir des résultats de
classification robustes et précis.

Les techniques statistiques de Lasso [Tibshirani, 1996,Candes et al., 2008] et de raccords via
les méthodes proposées par P.J. Huber [Huber, 1992,Huber, 2004] sont d’autres exemples notables
où la programmation quadratique joue un rôle essentiel. Le Lasso, abréviation de "Least Absolute
Shrinkage and Selection Operator", est utilisé dans les tâches de régression pour encourager
la parcimonie dans l’espace des solutions. La programmation quadratique assiste le processus
d’optimisation, résultant en des modèles mettant exclusivement l’accent sur les caractéristiques
importantes des données. D’autre part, la technique de raccord statistique proposée par P.J.
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Huber, offre une robustesse exemplaire contre des valeurs aberrantes présentes dans des données
d’entraînement. La programmation quadratique aide à déterminer les paramètres de l’ajustement
optimal qui trouvent un équilibre entre la précision de l’ajustement et la résistance aux valeurs
aberrantes.

Couches de Programmation Quadratique. L’incorporation de problèmes d’optimisation
différentiables en tant que couches au sein des réseaux neuronaux est récemment devenue
pratique et efficace pour résoudre certaines tâches d’apprentissage automatique de manière plus
performante, voir par exemple [Geng et al., 2020,Lee et al., 2019,Le Lidec et al., 2021,Donti
et al., 2017,de Avila Belbute-Peres et al., 2018,Amos et al., 2018,Bounou et al., 2021]. En effet,
de telles couches permettent implicitement de capturer des connaissances spécifiques au domaine
ou des connaissances a priori, contrairement aux réseaux neuronaux conventionnels. Parmi ces
types de couches, les couches de programmation quadratique offrent une grande puissance de
modélisation [Amos and Kolter, 2017].

1.1.2 Nécessité de solutions polyvalentes et fiables

Les applications significatives de la programmation quadratique ont été renforcées par des efforts
de recherche dédiés et le développement d’outils numériques robustes. Résoudre efficacement
les problèmes de programmation quadratique nécessite des considérations couvrant à la fois les
méthodes d’optimisation sous-jacentes et les détails de son implémentation. Nous présentons
ci-dessous un aperçu de certaines caractéristiques clés qui contribuent à l’efficacité pratique de la
programmation quadratique.

Vers des méthodes d’optimisation polyvalentes

Les provrammes quadratiques convexes exigent des algorithmes spécifiques qui respectent certaines
hypothèses sur le QP d’entrée fournie par les utilisateurs finaux. Pour répondre à un large
éventail d’applications, un algorithme efficace doit générer des solutions sous des hypothèses
minimales. De plus, des "hypothèses favorables" doivent donner lieu à un algorithme polyvalent,
permettant une utilisation flexible. Considérons les scénarios suivants :

• Souvent, les programmes quadratiques servent de sous-routines pour résoudre des problèmes
plus complexes, tels que la programmation quadratique séquentielle (PQS) [Nocedal and
Wright, 2006, Chapitre 16]. Fréquemment, ces programmes quadratiques sont étroitement liés.
Par conséquent, tirer parti des solutions antérieures pour initialiser les processus de résolution
de PQs ultérieurs émerge comme une propriété puissante.

• Dans des contextes tels que les applications robotiques et les tâches de cinématiques inverses,
obtenir une précision de solution au niveau du millimètre suffit. Par conséquent, des solutions
de PQs excessivement précises peuvent s’avérer inutiles. L’incorporation de stratégies d’arrêt
anticipé offre une autre utilité pratique.

• Troisièmement, l’approche utilisée devrait exploiter efficacement la structure inhérente du PQ,
telle que la parcimonie. En effet, certaines applications impliquent la résolution de problèmes
à grande échelle, tandis que d’autres traitent de problèmes plus compacts.

De plus, une méthode d’optimisation "idéale" devrait garantir de fournir des solutions relative-
ment rapidement. De plus, cette méthode devrait offrir des formulations mathématiquement
robustes en ce qui concerne les entrées du PQ, permettant des procédures de factorisation
efficaces ou des manipulations algébriques évitant la division par des valeurs potentiellement
faibles.



1.2 Contributions 4

De plus, les méthodes d’optimisation peuvent posséder des caractéristiques souhaitables
pour résoudre efficacement certains types de problèmes. Par exemple, le formulation intrinsèque
de la méthode d’optimisation peut naturellement encourager la parallélisation, ce qui permet
de prendre en charge efficacement des applications à grande échelle. Enfin, il convient de
souligner que pour une adoption généralisée, la simplicité d’une méthode d’optimisation est
essentielle. Cela implique un pseudo-code concis, une interprétabilité aisée, un nombre minimal
d’hyperparamètres sous-jacents et peu d’heuristiques.

Vers des implémentations efficaces

Les solveurs de programmation quadratique efficaces exploitent la puissance de routines
d’algèbre linéaire hautement optimisées avec des langages de programmation bas niveau
tels que C, C++ ou Rust. Ils privilégient des conceptions sans allocation de mémoire pour
minimiser les déplacements de mémoire pendant le processus de résolution. De plus, une "bonne
implémentation" présente une flexibilité à travers divers aspects :

• Programmation par modèles : Une utilisation intelligente de la programmation par
modèles s’adapte automatiquement à la précision des nombres à virgule flottante de
l’utilisateur final, garantissant une intégration efficace et une précision transparente.

• Capacités d’Interfaçage : Une interface aisée avec différents systèmes d’exploitation,
des langages de programmation de plus haut niveau (par exemple, Python ou Julia)
ou diverses plateformes numériques (par exemple, Cvxpy [Diamond and Boyd, 2016],
Casadi [Andersson et al., 2019], TSID [Del Prete et al., 2016]) améliore l’utilisabilité et la
polyvalence d’un software de programmation quadratique.

• Fonctionnalités Pratiques : Offrir des fonctionnalités pratiques, telle que la parallélisa-
tion pour les tâches d’apprentissage, élargit également le champ d’application.

De plus, un solveur de PQs bien conçu présente une API intuitive et bien documentée qui
simplifie l’intégration et l’utilisation. Enfin, il est important de souligner qu’un environnement
en libre accès et doté d’une licence flexible et d’une communauté active et réactive dote tous
les praticiens des outils essentiels pour améliorer les capacités d’un solveur de programmation
quadratique.

1.2 Contributions

1.2.1 Résumé des contributions

Dans cette thèse, notre attention se concentre sur la résolution et la différenciation efficaces de
programmes quadratiques convexes (PQ). Nous portons un accent particulier sur les applications
en robotique et en contrôle.

Nous commençons par introduire l’algorithme ProxQP. C’est une méthode de résolution
de PQs capable d’exploiter différentes structures de PQ grâce à l’utilisation de techniques de
Lagrangien augmenté primal-dual. Nous illustrons ses performances pratiques sur diverses
expériences standards en robotique et en contrôle, avec notamment une application de contrôle en
boucle fermée sur un robot réel. Bien que initialement conçu pour la robotique, nous démontrons
que ProxQP rivalise également avec les performances de solvers de pointe pour des problèmes
génériques, ce qui en fait un solveur polyvalent et applicable au-delà du domaine de la robotique.
De plus, nous établissons que pour des PQ convexes, ProxQP est garanti d’avoir une convergence
globale vers le PQ faisable le plus proche, une caractéristique examinée dans les applications de
contrôle en boucle fermée. Remarquablement, cette propriété améliore la stabilité et la sécurité
dans les techniques de contrôle en boucle-fermée.
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Nous exploitons ensuite cette caractéristique pour enrichir les capacités expressives des couches
de programmation quadratique. Plus précisément, nous montrons comment la différentiation à
travers les solutions de PQ faisables les plus proches permet d’étendre la portée des couches de PQ
apprenables. Nous montrons notamment que les nouvelles types de couches apprenables présentent
des performances prédictives supérieures dans des tâches d’apprentissage conventionnelles. De
plus, nous présentons des formulations alternatives qui améliorent la robustesse numérique, la
vitesse et la précision pour l’entraînement de telles couches.

Sur le plan pratique, nous proposons en complément de ces contributions la bibliothèque
ProxSuite comprenant deux logiciels en libre accès écrits en C++:

• ProxQP : Un solveur de PQ efficace.

• QPLayer : Une couche de PQ différentiable dotée de capacités d’apprentissage améliorées.

1.2.2 Organisation de cette thèse

Ce manuscrit est organisé comme suit. Dans Chapter 3, après avoir exposé l’énoncé du problème
de programmation quadratique et les conditions pour qu’il soit bien-posé, nous donnons une
introduction concise aux principales méthodes d’optimisation utilisées pour résoudre des PQs.
Dans Chapter 4, nous présentons d’abord les différentes composantes de l’algorithme ProxQP, y
compris sa preuve de convergence et les détails de son implémentation. Ensuite, nous présentons
un parangonnage approfondis sur des problèmes robotiques et des PQs standard. Dans Chapter 5,
nous présentons un résumé des principales techniques algorithmiques utilisées pour concevoir
des couches de PQ différentiables efficaces. Dans Chapter 6, nous présentons une approche
unifiée pour aborder la différentiabilité à la fois des PQs faisables et infaisables en introduisant
notamment la notion de Jacobien Conservatif Étendu. Nous proposons des moyens efficaces pour
le calculer dans les modes de différentiation automatique direct et indirect, et nous montrons
enfin comment cette méthode permet d’entraîner une gamme plus large de couches de PQs.
Nous illustrons ensuite à travers différentes comparaisons que (i) cette technique performe
que les approches traditionnelles pour résoudre certaines tâches, (ii) en utilisant les approches
d’apprentissage courantes QPLayer s’exécute plus rapidement que les approches actuelles de
l’état de l’art et est également numériquement plus robuste. Enfin, Chapter 7 esquisse des
perspectives globales et offre un point de vue personnel sur de futures directions de recherche.

1.2.3 Publications associées et logiciels

Cette thèse a donné lieu à plusieurs publications, toutes traitant de l’optimisation numérique et
différentiable.

Articles de conférence

• Antoine Bambade, Sarah El-Kazdadi, Adrien Taylor, Justin Carpentier. ProxQP: Yet
another Quadratic Programming Solver for Robotics and beyond. In Robotics: Science
and System (RSS), 2022;

• Wilson Jallet, Antoine Bambade, Nicolas Mansard, Justin Carpentier. Constrained
differential dynamic programming: A primal-dual augmented lagrangian approach. In
EEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022;

• Louis Montaut, Quentin Le Lidec, Antoine Bambade, Vladimir Petrik, Josef Sivic, Justin
Carpentier. Differentiable collision detection: a randomized smoothing approach. In IEEE
International Conference on Robotics and Automation (ICRA), 2023.
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Article de Workshop

• Wilson Jallet, Antoine Bambade, Nicolas Mansard, Justin Carpentier. ProxNLP: a
primal-dual augmented Lagrangian solver for nonlinear programming in Robotics and
beyond. In 6th Legged Robots Workshop, 2022.

Articles soumis

• Antoine Bambade, Fabian Schramm, Adrien Taylor, Justin Carpentier. QPLayer:
efficient differentiation of convex quadratic optimization. Submitted to Advances in Neural
Information Processing Systems, 2023.

• Antoine Bambade, Fabian Schramm, Sarah El-Kazdadi, Stéphane Caron, Adrien Taylor,
Justin Carpentier. ProxQP: an Efficient and Versatile Quadratic Programming Solver
for Real-Time Robotics Applications and Beyond. Submitted to IEEE Transactions on
Robotics (TRO) (September 2023).

• Wilson Jallet, Antoine Bambade, Etienne Arlaud, Sarah El-Kazdadi, Nicolas Mansard,
Justin Carpentier. ProxDDP: Proximal Constrained Trajectory Optimization. Submitted
to IEEE Transactions on Robotics (TRO) (September 2023).

• Wilson Jallet, Antoine Bambade, Fabian Schramm, Quentin Le Lidec, Nicolas Mansard,
Justin Carpentier. Notes on importance sampling of the first-order gradient estimator.
Communication item submitted to IEEE Transactions on Robotics (TRO) (September
2023).

Logiciel

Cette thèse a également conduit au développement de ProxSuite1, une bibliothèque C++ et
en libre accès offrant le solveur ProxQP et QPLayer pour résoudre et différencier efficace-
ment des programmes quadratiques. Cette nouvelle bibliothèque compte déjà environ 250 000
téléchargements et est désormais présente dans de nombreuse autres plateformes logicielles (par
exemple, Cvxpy, Casadi, TSID).

1https://github.com/Simple-Robotics/proxsuite

https://github.com/Simple-Robotics/proxsuite
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2.1 Motivation

2.1.1 The various applications of Quadratic Programming

Convex Quadratic Programming (QP) is concerned with optimizing a convex quadratic objective
function while adhering to linear constraints. It represents one of the fundamental forms of
convex non-linear programming, and its significance is evident as a cornerstone in the modern
engineering toolkit. Below, we outline a non-exhaustive compilation of Quadratic Programming
applications across various scientific domains, followed by a more detailed summary of its role in
Robotics and Machine Learning, the two application domains at the core of this thesis.

Applications in Science

Quadratic Programming finds extensive utility in addressing tasks that demand resource allocation
(e.g., engineering design, power generation, economic planning, portfolio optimization) and data
reconstruction (e.g., filtering techniques). A few exemplar applications are summarized below.
The interested reader can get more references in the following bibliography overview [Gould and
Toint, 2000].

Engineering Design. Quadratic Programming plays a pivotal role in engineering design
challenges, such as optimizing the design of structures or systems. It facilitates the identification
of optimal design parameters by minimizing a quadratic objective function while adhering to
design constraints [Deb, 2012,Shi et al., 2016,Zhou et al., 2012].
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Signal Processing. Quadratic Programming is harnessed in signal processing endeavors,
encompassing signal reconstruction and filtering applications [Abdelmalek, 1983,Adams et al.,
1994, Hassanien et al., 2008, Nordebo et al., 1994, Bitmead et al., 1986, Simon and Simon,
2006,Mattingley and Boyd, 2010].

Resource Allocation. Quadratic Programming aids in identifying optimal allocations under
resource limitations. Noteworthy instances span diverse domains, including power generation
optimization for electrical utilities [Momoh et al., 1999,Nanda et al., 1989,Zhang et al., 2018],
logistics optimization [Liu and Zhang, 2016, Matskul et al., 2021], corporate and economic
planning [SHIM, 1983,Reid and Hasdorff, 1973,Rao, 1961,Fan and Zhang, 1998,McCarl et al.,
1977], agricultural decisions such as crop selection [McFarquhar, 1961, Wiens, 1976, Marques
et al., 2010], and portfolio optimization for risk reduction in finance [Markowitz, 1952,Cornuejols
and Tütüncü, 2006,Boyd et al., 2017,Boyd and Vandenberghe, 2004].

Applications in robotics

Optimization has become a key enabler to simplify and systematize the programming of complex
robot movements. Many modern robotic problems ranging from simulation, control, planning,
and estimation are framed as optimization problems.

Quadratic programming is used in robotics for motion planning and control. It helps find
the optimal trajectory or control inputs that minimize a quadratic cost function while satisfying
system dynamics and constraints. Among others, it allows to model friction-less unilateral contact
modelling [Redon et al., 2002], constrained forward dynamics [Carpentier et al., 2021], inverse
kinematics and dynamics for task control [Escande et al., 2014,Herzog et al., 2016,Kuindersma
et al., 2016], and legged locomotion [Wieber, 2006a,Carpentier and Wieber, 2021,Wensing et al.,
2022]. QPs are also commonly used as subroutines for solving more complex problems, for
instance, in the context of constrained optimal control problems [Leineweber et al., 2003,Houska
et al., 2011,Tassa et al., 2014,Jallet et al., 2022a]

Applications in Machine learning

In the realm of machine learning, quadratic programming finds application in a range of algorithms
dedicated to solving fitting problems. Some prominent instances include Support Vector
Machines (SVMs), Lasso, and Huber fitting techniques.

Support Vector Machines (SVMs) have gained substantial recognition for their efficiency
in classification tasks. Quadratic programming is a fundamental tool in SVMs [Cortes and
Vapnik, 1995], employed to determine the optimal hyperplane that effectively separates data
points from different classes while maximizing the margin between these classes. This approach
helps achieving robust and accurate classification outcomes.

Lasso [Tibshirani, 1996,Candes et al., 2008] and Huber fitting [Huber, 1992,Huber, 2004]
are additional noteworthy examples where quadratic programming plays a pivotal role. Lasso,
short for "Least Absolute Shrinkage and Selection Operator," is employed in regression tasks to
encourage sparsity in the solution space. Quadratic programming assists in the optimization
process, resulting in models that emphasize important features while discarding less significant
ones. On the other hand, Huber fitting offers robustness against outliers in data by applying
an appropriate loss function. Quadratic programming aids in determining the optimal fitting
parameters that strike a balance between fitting accuracy and resistance to outliers.

Incorporating differentiable optimization problems as layers within neural networks has
recently become practical and effective for solving certain machine learning tasks, see, for
instance [Geng et al., 2020,Lee et al., 2019,Le Lidec et al., 2021,Donti et al., 2017,de Avila Belbute-
Peres et al., 2018,Amos et al., 2018,Bounou et al., 2021]. Indeed, such layers implicitly allow for
capturing useful domain-specific knowledge or priors contrary to conventional neural networks.
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Among such types of layers, Quadratic Programming layers offer a rich modeling power [Amos
and Kolter, 2017].

2.1.2 Necessity of efficient and reliable solution methods

Dedicated research efforts and the development of robust numerical tools have bolstered the
significant applications of quadratic programming. Effectively solving Quadratic Programming
problems necessitates considerations spanning both underlying optimization methods and imple-
mentation details. We present below an overview of some key attributes that contribute to the
efficiency of practical Quadratic Programming.

Versatile optimization methods

Convex Quadratic Programs (QPs) demand specific algorithms that adhere to certain assumptions
about the input QP from end users. To cater to a wide array of applications, an efficient algorithm
should generate solutions under minimal assumptions. Additionally, "favorable assumptions"
should yield a versatile algorithm, allowing for flexible use. Consider the following scenarios:

• Often, Quadratic Programs serve as subroutines in solving more complex problems, such as
Sequential Quadratic Programming (SQP) [Nocedal and Wright, 2006, Chapter 16]. Frequently,
these QPs are closely related. Consequently, leveraging prior solutions for warm-starting
subsequent QP-solving processes emerges as a potent feature.

• In contexts like Robotic applications and inverse kinematic tasks, achieving millimeter-level
solution precision is sufficient. Hence, overly accurate QP solutions may prove unnecessary.
Incorporating early-stopping strategies offers practical utility.

• Thirdly, the employed approach should effectively exploit the inherent structure of the QP,
such as sparsity. Indeed, some applications involve solving vast-scale problems, while others
deal with more compact ones.

Furthermore, an "ideal" optimization method should guarantee relatively fast solution
provision. Additionally, this method should offer mathematically robust formulations regarding
QP entries, enabling efficient factorization procedures or algebraic manipulations avoiding division
by potentially small values.

Moreover, optimization methods can possess desirable features that facilitate efficient
problem-solving. For instance, inherent calculus may naturally prompt parallelization, accommo-
dating large-scale applications. Finally, it is worth emphasizing that for widespread adoption,
an optimization method’s simplicity is key. This entails concise pseudo-code, interpretability,
minimal hyper-parameters, and few heuristics.

Efficient and clean implementation

Efficient practical solvers for quadratic programming harness the power of highly optimized
linear algebra routines with low-level programming languages such as C, C++, or Rust. They
prioritize memory allocation-free designs to minimize memory movement during the solving
process. Moreover, a "good implementation" exhibits flexibility through various aspects:

• Template Programming: Smart use of template programming automatically adapts to
end-user floating-point precision, ensuring seamless integration and accuracy.

• Interfacing Capabilities: Effortless interfacing with different Operating Systems, higher-
level programming languages (e.g., Python, Julia), or diverse numerical frameworks (e.g.,
Cvxpy [Diamond and Boyd, 2016], Casadi [Andersson et al., 2019], TSID [Del Prete
et al., 2016]) enhances usability and versatility.
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• Practical Features: Offering practical functionalities, such as parallelization for learning
tasks, broadens the scope of applications.

In addition, a well-designed QP solver boasts an intuitive and well-documented API that
simplifies integration and use. Lastly, it is important to highlight that an open-source environment
featuring a flexible license and an active and responsive community equips all practitioners
with the essential tools to enhance the capabilities of a Quadratic Programming solver.

2.2 Summary of contributions
In this thesis, our focus centers on solving and differentiating efficiently convex QPs, with a
particular emphasis on robotics and machine learning applications.

We start by introducing the ProxQP algorithm, a highly efficient QP solver adept at
exploiting diverse QP structures through the utilization of primal-dual augmented Lagrangian
techniques. We evaluate its practical performance on various standard robotic and control
experiments, including a real-world closed-loop control application. While initially tailored for
robotics, we demonstrate that ProxQP also rivals the state-of-the-art performance in generic
QP problems, thereby rendering it a versatile off-the-shelf solver applicable beyond the realms
of robotics. Additionally, we show that the ProxQP algorithm features a global convergence
guarantee, as well as a few other advantageous numerical properties. Furthermore, we highlight
that the ProxQP algorithm, and more generally primal-dual Proximal augmented Lagrangian
methods, actually solves the closest primal-feasible QP—in a classical ℓ2 sense that we detail
in the sequel—if the original QP appears to be primally infeasible. Remarkably, this feature
enhances stability and safety in high-speed control techniques.

We then harness this feature to enrich the expressive capabilities of existing quadratic
programming layers. More precisely, we show how differentiation through the closest feasible QP
solutions extends the scope of learnable QP layers, notably demonstrating superior predictive
performance in conventional learning tasks. Additionally, we present alternative formulations
that enhance numerical robustness, speed, and accuracy for training such layers.

On the practical side, we provide the ProxSuite library with two open-source C++ software
packages as companions to these contributions:

• ProxQP: An efficient QP solver tailored for robotics and beyond.

• QPLayer: A QP layer endowed with enhanced learning capabilities.

2.2.1 Organisation of this thesis

This manuscript is organized as follows. In Chapter 3, after mathematically defining QP problems
and the conditions for well-posedness, we give a concise introduction of the main optimization
methods used for solving QPs. In Chapter 4 we first present the various components of ProxQP
algorithm, including its proof of convergence and implementation details. We then present
extensive benchmarks on robotic and standard QP problems. In Chapter 5 we provide a summary
of the main algorithmic techniques used for designing efficient QPs layers. In Chapter 6, we
present a unified approach to tackle the differentiability of both feasible and infeasible QPs
by notably introducing the notion of Extended Conservative Jacobian. We propose efficient
ways to compute it in both forward and backward automatic differentiation modes and finally
demonstrate how this method enables training a broader range of QP layers. We notably illustrate
on standard benchmarks that this technique performs better than traditional approaches for
solving some tasks. We also show that when using standard learning approaches, our QP layer
formulation performs faster than current state-of-the-art QP layers and is also numerically more
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robust. Finally, Chapter 7 draws global perspectives and gives a personal view on future research
directions.

2.2.2 Associated publications and software

This thesis has led to several publications, all of them dealing with numerical and differentiable
optimization. We also mention other contributions not directly related to this thesis.

Conference articles

• Antoine Bambade, Sarah El-Kazdadi, Adrien Taylor, Justin Carpentier. ProxQP: Yet
another Quadratic Programming Solver for Robotics and beyond. In Robotics: Science
and System (RSS), 2022;

• Wilson Jallet, Antoine Bambade, Nicolas Mansard, Justin Carpentier. Constrained
differential dynamic programming: A primal-dual augmented lagrangian approach. In
EEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022;

• Louis Montaut, Quentin Le Lidec, Antoine Bambade, Vladimir Petrik, Josef Sivic, Justin
Carpentier. Differentiable collision detection: a randomized smoothing approach. In IEEE
International Conference on Robotics and Automation (ICRA), 2023.

Workshop articles

• Wilson Jallet, Antoine Bambade, Nicolas Mansard, Justin Carpentier. ProxNLP: a
primal-dual augmented Lagrangian solver for nonlinear programming in Robotics and
beyond. In 6th Legged Robots Workshop, 2022.

Submitted articles

• Antoine Bambade, Fabian Schramm, Adrien Taylor, Justin Carpentier. Leveraging
augmented-Lagrangian techniques for differentiating over infeasible quadratic programs in
machine learning. Submitted to International Conference on Learning Representations,
2024.

• Antoine Bambade, Fabian Schramm, Sarah El-Kazdadi, Stéphane Caron, Adrien Taylor,
Justin Carpentier. ProxQP: an Efficient and Versatile Quadratic Programming Solver
for Real-Time Robotics Applications and Beyond. Submitted to IEEE Transactions on
Robotics (TRO) (September 2023).

• Wilson Jallet, Antoine Bambade, Etienne Arlaud, Sarah El-Kazdadi, Nicolas Mansard,
Justin Carpentier. ProxDDP: Proximal Constrained Trajectory Optimization. Submitted
to IEEE Transactions on Robotics (TRO) (September 2023).

• Wilson Jallet, Antoine Bambade, Fabian Schramm, Quentin Le Lidec, Nicolas Mansard,
Justin Carpentier. Notes on importance sampling of the first-order gradient estimator.
Communication item submitted to IEEE Transactions on Robotics (TRO) (September
2023).

This thesis has also led to the development of ProxSuite1, an open-source C++ library
offering the ProxQP solver and QPLayer for efficiently solving and differentiating through
Quadratic Programs. This novel library counts already about 300k downloads and is now present
in many software frameworks (e.g., Cvxpy, Casadi, TSID).

1https://github.com/Simple-Robotics/proxsuite

https://github.com/Simple-Robotics/proxsuite
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Chapter3
Background on Quadratic Programming

Abstract. In this chapter we review the Quadratic Programming (QP) problem statement as
well as conditions under which it is well-posed. We then give a concise introduction of the main
algorithmic solution methods for solving QPs. More precisely, we review Active-Set methods,
Primal-Dual Interior-Point methods, and Augmented Lagrangian (AL) methods. For the last
family of methods, we distinguish those based on the Alternate Direction Method of Multipliers
(ADMM) from those based on the Method of Multipliers (MM). Indeed, although ADMM is
constructed from AL, it fundamentally manipulates a different splitting operation, thereby
changing its convergence properties. For each of these methods, we propose a summary of a
representative algorithm, its associated convergence guarantees, typical complexity if available,
practical pros and cons, references to existing implementations of the approach, and some details
about their practical implementations. This introduction is based on the reference books by [Boyd
and Vandenberghe, 2004,Nocedal and Wright, 2006] and the following seminal works [Ferreau
et al., 2014,Goldfarb and Idnani, 1983,Mehrotra, 1992,Stellato et al., 2020,O’Donoghue et al.,
2016,Rockafellar, 1976a,Marchi., 2021]. The introduction also mentions other specific
references.
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3.1 QPs: problem statement and optimality conditions
In this section we set the Quadratic Program statement and the conditions for being well-posed.
We then review practical standard conditions used for evaluating the well-posedness of the
problem or one of its solutions.

3.1.1 Problem statement

Formally, a Quadratic Program (QP) corresponds to the minimization of a convex quadratic cost
under linear inequality constraints. It is mathematically described as follows:

min
x∈Rn

{
f(x) def= 1

2x⊤Hx + g⊤x

}
s.t. Cx ≤ u,

(QP)

where H ∈ Rn×n is a symmetric positive semi-definite matrix (notation S+(Rn)), g ∈ Rn,
C ∈ Rm×n, and u ∈ Rm. The problem dimension is n, and m corresponds to the number of
inequality constraints. (QP) is said to be feasible if there exists at least one x ∈ Rn such that
Cx ≤ u.

3.1.2 Duality

Lagrangian of the problem: The Lagrangian function L associated to (QP) is defined by:

L(x, z) def= f(x) + z⊤(Cx− u), (3.1)

where x ∈ Rn is the primal variable and z ∈ Rm corresponds to the dual variable.

Dual function: The dual function for (QP) is defined as follows [Boyd and Vandenberghe,
2004, Section 5.1.2]

δ(z) def= inf
x∈Rn

L(x, z). (3.2)

When the Lagrangian is unbounded below in x, the dual function takes on the value −∞. Since
the dual function is the pointwise infimum of a family of affine functions of z, it implies that δ is
concave.

The dual function yields lower bounds on the optimal value p∗ of the problem (QP). For any
z ≥ 0, we have [Boyd and Vandenberghe, 2004, Section 5.1.3] that:

δ(z) ≤ p∗ (3.3)

This motivates us to consider the supremum of (3.3) to obtain the best possible lower bound
of (QP).

Dual problem: The dual problem for (QP) is defined [Boyd and Vandenberghe, 2004, Section
5.2] as

sup
z∈Rm

+

δ(z), (Dual-QP)

which leads from (3.3) to so-called weak-duality inequality

d∗ def= sup
z∈Rm

+

δ(z) ≤ p∗. (3.4)

(Dual-QP) is said to be feasible if δ < +∞.
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Strong duality: For linearly constrained convex optimization problems such as (QP), strong
duality holds, i.e., p∗ = d∗, provided (QP) or (Dual-QP) is feasible [El Ghaoui, 2012, Theorem 2].
This property notably implies that the order of the minimization over x and the maximization
over z ≥ 0 of the Lagrangian function L can be switched without affecting the result.

3.1.3 Certificates of optimality

The KKT conditions: The Karush-Kuhn-Tucker (KKT) conditions are necessary and suffi-
cient for feasibility and optimality of a primal-dual point (x, z) with zero duality gap [Boyd and
Vandenberghe, 2004, Section 5.5.3]. For (QP), the KKT system is given by the set of conditions:

Hx + g + C⊤z = 0,
z ≥ 0,
Cx ≤ u,
z ⊙ (Cx− u) = 0,

(KKT)

where ⊙ denotes the Hadamard product (i.e., for two vectors u, v ∈ Rm, u⊙ v ∈ Rm is the
vector whose ith entry is uivi). The latter condition is also known as the complementary
slackness. It can be equivalently replaced by the zero duality gap condition which writes down
for (QP) [O’Donoghue et al., 2016, Section 2.1]

x⊤Hx + g⊤x + u⊤z = 0. (3.5)

Active constraints: For a component index i ∈ [1, m], the ith constraint is said to be active if

C⊤
i x = ui, (3.6)

where Ci refers to the ith row of C. The complementary slackness condition [Boyd and Vanden-
berghe, 2004, Section 5.5.2] implies that:

zi > 0 =⇒ C⊤
i x = ui, (3.7)

C⊤
i x < ui =⇒ zi = 0. (3.8)

The active-set for KKT refers to the set I for which index elements point to the active constraints

I
def= {i ∈ [1, m]|C⊤

i x = ui}. (3.9)

Practical stopping criterion: In practice, we look for a tuple (x, z) satisfying the optimality
conditions (KKT) up to a certain level of predefined accuracy ϵabs > 0, (whose value typically
depends on the application at hand), in the following sense [O’Donoghue et al., 2016, Section
3.5]: 

∥Hx + g + C⊤z∥∞ ≤ ϵabs,
∥[Cx− u]+∥∞ ≤ ϵabs,
|x⊤Hx + g⊤x + u⊤z| ≤ ϵabs.

(3.10)

In this work, we prefer the ℓ∞ norm to the ℓ2 norm as it is independent of the dimension d. It
is also common to consider relative convergence criteria for early stopping, as absolute targets
might not be reached due to the lack of numerical precision. In such cases, an additional relative
tolerance level ϵrel > 0 is introduced [Stellato et al., 2020, Section 5.1]

∥Hx + g + C⊤z∥∞ ≤ ϵabs + ϵrel max(∥Hx∥∞, ∥g∥∞, ∥C⊤z∥∞),
∥[Cx− u]+∥∞ ≤ ϵabs + ϵrel max(∥Π]−∞,u](Cx)∥∞, ∥Cx∥∞),
|x⊤Hx + g⊤x + u⊤z| ≤ ϵabs + ϵrel(|x⊤Hx|+ |g⊤x|+ |u⊤z|),

(3.11)

where z 7→ Π]−∞,u](z) refers to the projection of z onto the set [−∞, u].



3.2 Active-set methods 16

3.1.4 Certificates of infeasibility

From the theorem of strong alternatives [Boyd and Vandenberghe, 2004, Section 5.8], [Banjac
et al., 2019, Proposition 3.1] exactly one of the following set is nonempty if strong duality holds:

P def= {x ∈ Rn|Cx− u ≤ 0},

D def= {z ∈ Rm|C⊤z = 0, z ≥ 0, u⊤z < 0}.
(3.12)

Since P encodes primal feasibility, this implies that any dual variable z ∈ D serves as a certificate
that the set P is empty, i.e., that the problem is primal infeasible.

Furthermore, it has been shown in [Banjac et al., 2019, Proposition 3.1], that a vector x ∈ Rn

satisfying the following condition is a certificate of dual infeasibility

Hx = 0,

g⊤x < 0,

Cx ∈ C∞,

(3.13)

where C∞ def= {z ∈ Rm|Cx− u + τz ≥ 0, x ∈ Rn, τ ≥ 0} is the recession cone of the constraint set.
The last condition splits as follows for i ∈ [1, m] when dealing with linear constraints:

(Cx)i = 0 if ui ∈ R,

(Cx)i ≥ 0 if ui = +∞.
(3.14)

Practical conditions for infeasibility: In practice, (QP) is considered being primal infea-
sible at tolerance level ϵpinf > 0 if for a nonzero vector dz ≥ 0 the following two conditions
hold [Hermans et al., 2021, Section 5.4.2]

∥C⊤dz∥∞ ≤ ϵpinf∥dz∥∞,

u⊤dz ≤ −ϵpinf∥dz∥∞.
(3.15)

Moreover, the problem is determined to be dual infeasible at tolerance level ϵdinf > 0 if for some
vector dx ̸= 0 [Hermans et al., 2021, Section 5.4.2] the following holds for all i ∈ [1, m]

(Cdx)i ≤ ϵdinf∥dx∥∞ if ui ∈ R,

(Cdx)i ≥ −ϵdinf∥dx∥∞ if ui ≥ 0,
(3.16)

and
∥Hdx∥∞ ≤ ϵdinf∥dx∥∞,

g⊤dx ≤ −ϵdinf∥dx∥∞.
(3.17)

3.2 Active-set methods
The basic idea behind active-set methods is to iteratively update an active set of constraints
that are likely to be active at the optimal solution. At each iteration, the algorithm solves a
reduced QP problem that only considers the active constraints as equality constraints. If the
current active set is optimal, the algorithm terminates. Otherwise, it updates the active set by
adding or removing constraints based on certain optimality conditions.

Active-set methods are particularly efficient when the number of constraints is small, and the
problem is not degenerate (e.g., constraint matrices are full rank, or f is strictly convex). We
start reviewing these methods with the Simplex Method since it is a well-known and efficient
active-set algorithm for solving linear programs (LP). We then review primal and dual active-set
methods (which are direct extensions of the Simplex Method applied to the primal and dual
of (QP)). Finally, we detail Parametric Active-Set Methods, which are particularly efficient for
solving Sequential Quadratic Programs (SQP).
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3.2.1 The Simplex Method

Figure 3.1: Geometric illustration of solving an LP using the Simplex method.

Algorithm summary: The Simplex Method [Dantzig, 1990] (and its revised version see Algo-
rithm 1) solves Linear Programs (LP) of the following standard form, assuming m ≤ n,

min
x∈Rn

g⊤x,

s.t., Cx = u,

x ≥ 0.

(3.18)

It uses the property that for a well-posed and not degenerate LP, there always exists a vertex,
which is a solution to its constrained polyhedron. More precisely, The Simplex Method starts
from a vertex x̂ of the feasible set and then calculates at each iteration a new vertex x̂+ unless it
is observed that x̂+ is a solution or that the problem is unbounded (see Figure 3.1).

Convergence properties: The standard and revised Simplex Method assumes that (see
e.g., [Nocedal and Wright, 2006, Section 13])

AP
def= {x ∈ Rn|Cx = u, x ≥ 0}, (3.19)

is a non-empty polyhedron and that C ∈ Rm×n has full row rank. Then, provided that the
linear program is not degenerate (we review this notion hereafter) and bounded, the Simplex
Method terminates at an optimal point [Nocedal and Wright, 2006, Theorem 13.4]. Regarding
its convergence speed, it has been proven that its worst-case complexity is exponential [Klee and
Minty, 1972].

Pros and cons: Despite its exponential worst-case complexity, the Simplex Method is re-
markably efficient in practice, which explains why it is widely used. Historically, it constituted
a great improvement over earlier methods (such as Fourier–Motzkin elimination; see for more
details [Nocedal and Wright, 2006, Section 13.4]). It has notably been shown that when the
inputs to the algorithm are slightly randomly perturbed, the expected running time of the method
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is polynomial for any inputs [Dadush and Huiberts, 2018,Spielman and Teng, 2004]. This means
that for any problem, there is a "nearby" one that the Simplex Method will efficiently solve,
covering most real-world linear programs.

Yet, it may require some arduous preprocessing phase to match the convergence assumptions
(e.g., to try removing redundancies in the constraints of C). Furthermore, C being full rank still
does not prevent cycling effects due to the degeneracy of some solutions [Nocedal and Wright,
2006, Section 13.5].

Detailed implementation: We define the matrix C•B = [Ci]i∈B, where Ci is the ith column
of C.

Definition 1. A vector x ∈ Rn is a basic feasible point if it is feasible and if there exists a
subset B of m indexes in [1, n] such that C•B is nonsingular and such that i /∈ B =⇒ xi = 0.
Such a set is called a basis for the problem. It is said to be degenerate if xi = 0 for some i ∈ B.
The linear program (3.18) is said to be degerenate if it has at least a degenerate basis. The
complementary set of B within [1, n] is noted N .

Algorithm 1: The revised Simplex Method
Inputs: a basis B, its complementary set N , xB = C−1

•B u ≥ 0, xN = 0 provided by (3.20),
Initialization:
Solve C⊤

•Bλ = gB for λ,
Compute the reduced cost: r = gN − C⊤

N λ,
while r < 0 do

Select q ∈ N with rq < 0 as the entering index;
Solve C•Bd = −C•j for d;
If d ≥ 0 stop since the problem is unbounded;
Compute k = arg min{−xi

di
|i ∈ B|di < 0} and α̂ = −xk

dk
;

xB ←− xB + α̂d, xN ←− (0, ..., 0,−α̂, 0, ..., 0);
B ←− (B ∪ {j}) \ {k}, N ←− (B ∪ {k}) \ {j};
r ←− gN − C⊤

N C−⊤
•B gB;

end

To determine a starting basic feasible point, it is possible to solve what is called the following
"Phase I" program

min
x∈Rn,z∈Rm

m∑
i=1

zi,

Ax + Dz = u,

x ≥ 0, z ≥ 0,

(3.20)

where D is the diagonal matrix for which Dii = 1 if ui ≥ 0 and Dii = −1 otherwise. To
solve (3.20), it is possible to use the Simplex Method starting from (0, Du) since it is by
construction a basic feasible point [Nocedal and Wright, 2006, Section 13.5]. Alternative solutions
exist, such as the "Big M" approach, which will be reviewed for the Primal Active-Set method.

3.2.2 Primal Active-set Methods

Algorithm summary: Primal Active-Set Methods (see Algorithm 2) are an extension of
the Simplex Method for QPs. They differ fundamentally in the sense that optimal solutions
for (QP) do not necessarily lie anymore at the vertices of the constraint polyhedron. Yet, similarly
to the Simplex Method, Primal Active-Set methods first find a feasible point using a Phase I
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approach. They then fix a working set, a maximal linearly independent subset of the active
constraints, and solve the subproblem for which the inequality constraints of the working set are
imposed as equalities. This resulting equality-constrained QP can be efficiently solved through
a linear system. This procedure generates primal feasible iterates and is repeated until dual
feasibility and, hence, an optimal solution is obtained.

Convergence properties: Standard assumptions require the constraint matrix C to be of full
row rank. Furthermore, it is shown that under strict convexity of f , primal active set methods
converge globally [Nocedal and Wright, 2006, Section 16.5].

Pros and Cons: Similarly to the Simplex Method, Primal Active-Set Methods can work very
well in practice, especially on small-sized QPs. On the positive side, hot-start strategies (reuse
of the previous factorization) can easily be incorporated in this setting. This is usually key for
solving cascades of similar QPs, which is common in applications such as sequential quadratic
programming (SQP) and model predictive control (MPC). The QPA module in the open-source
software GALAHAD [Gould et al., 2017] provides a primal active-set-based implementation
(handling also ℓ1 penalties in the cost function).

Yet, the initial Phase I can be costly and reduce the possibility of warm-starting. Furthermore,
Primal Active-Set Methods have limited scalability, struggle to exploit sparsity, and are hard to
early-stop at inexact solutions satisfying (3.10) at accuracy ϵabs (they tend to stop only when a
global solution is found, i.e., with ϵabs = 0). Moreover, they may require strong assumptions, such
as the QP being strictly convex or the constraint matrix being of full rank. These assumptions can
reduce their applicability and may cause robustness issues, such as “active-set cycling” [Nocedal
and Wright, 2006, sections 13.5 and 16.5]

Detailed implementation: Formally, considering a feasible iterate xk and a working set Wk,
solving

min
p∈Rn

1
2p⊤Hp + g⊤

k p

s.t., C⊤
i p = 0, i ∈ Wk,

(3.21)

with gk
def= Hxk + g corresponds to minimizing f(xk + p) along the current working set. Solv-

ing (3.21) amounts to finding a solution to the linear system[
H C⊤

Wk

CWk
0

] [
p
λ

]
=
[
−gk

0

]
, (3.22)

for some multiplier vector λ. Under the regularity conditions above, it can be handled efficiently
using one of the methods detailed in [Nocedal and Wright, 2006, Sections 16.2 and 16.3]1. Noting
pk a solution for (3.21), by construction this direction step guarantees that

C⊤
i (xk + αpk) = ui, ∀i ∈ Wk,∀α ∈ R. (3.23)

Supposing for the moment that the optimal pk from (3.21) is nonzero, the update

xk+1 = xk + αkpk, (3.24)

with

αk = min(1, min
i/∈Wk,C⊤

i pk>0

ui−C⊤
i xk

C⊤
i pk ), (3.25)

1Namely, null-space approach, Schur complement method, direct factorization of the system, Conjugate Gradient
or Projected Conjugate Gradient methods.
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guarantees an optimal step-length direction. Indeed, for i ∈ Wk the constraint is satisfied re-
gardless of αk. Otherwise, for i /∈ Wk, if C⊤

i pk ≤ 0, then for all αk ≥ 0, C⊤
i (xk + αkpk) ≤ C⊤

i xk ≤ ui.
Hence, the constraint i will be satisfied for all nonnegative choices of the step-length parameter.
For i /∈ Wk and C⊤

i pk > 0, the inequality C⊤
i (xk + αkpk) ≤ ui happens only if

αk ≤ ui−C⊤
i xk

C⊤
i pk . (3.26)

If αk < 1, that is the step along pk is blocked by some constraint not in Wk, a new working set
Wk+1 is then constructed by adding one of the blocking constraints to Wk.

We continue to iterate in this manner, adding constraints to the working set until we reach
a point x̂ that minimizes the quadratic objective function over its current working set Ŵ. It
is easy to recognize such a point because the subproblem (3.21) has solution p = 0. When it
eventually happens, the dual multipliers ẑ can be derived by solving∑

i∈Ŵ

ẑiCi = Hx̂ + g, (3.27)

and by setting ẑi = 0, ∀i /∈ Ŵ. The multipliers sign must then be checked to satisfy the full
complementarity conditions:

• If ẑi ≥ 0, ∀i ∈ Ŵ ∩ I, then x̂ is global solution for (QP),

• Otherwise, one or more of the multipliers ẑi, i ∈ Ŵ ∩ I is negative, and the objective
function f may be decreased by dropping one of these constraints from the working set and
solving the new resulting sub-problem ( [Nocedal and Wright, 2006, Section 12.3] propose
several choices for removing such constraint). This strategy produces a direction p at the
next iteration that is feasible with respect to the dropped constraint.

Various techniques can be used to determine an initial feasible point. A "Phase I" approach
can be used following what was described for the Simplex Method (3.18). An alternative that
would also work for the Simplex Method is a penalty method (also referred to as "big M"), which
includes a measure of infeasibility in the objective that is guaranteed to be zero at the solution.
That is, we introduce a scalar artificial variable η into (QP) to measure the constraint violation,
and solve the problem

min
x,η

f(x) + Mη,

s.t., Cx− u ≤ η, 0 ≤ η
(3.28)

for some large positive value of M. It can be shown that whenever there exist feasible points
for the original problem (QP), then for all M sufficiently large, the solution of (3.28) will have
η = 0, with an x component that is a solution for (QP).

3.2.3 Dual Active-Set Methods

Algorithm summary: Dual Active-Set Methods (see Algorithm 3) are an extension of the Dual
Simplex Method for QPs [Nocedal and Wright, 2006, Section 13.6]. Similarly to the Dual Simplex
Method, Dual Active-Set methods fix a working set, a maximal linearly independent subset of the
active constraints, and solve the subproblem for which the inequality constraints of the working
set are imposed as equalities. This resulting equality-constrained QP can be efficiently solved
through a linear system. This procedure generates dual feasible iterates and is repeated until
primal feasibility, and hence, an optimal solution is obtained.

Convergence properties: Standard assumptions require the constraint matrix C to be of full
row rank and strict convexity of f . It ensures global convergence of the method [Goldfarb and
Idnani, 1983, Theorem 3].
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Algorithm 2: Primal Active-Set Methods
Inputs:
Compute x̂ a feasible starting point solving the broader problem (3.28),
Set W0 to be a subset of the active constraints at x0.
for k = 0, 1, ... do

Solve (3.21) to find pk;
if pk = 0 then

Find ẑ solving (3.27) with Ŵ =Wk;
if ẑi ≥ 0 ∀i ∈ Wk ∩ I then

stop with solution (xk, ẑ)
else

j ←− arg minj∈Wk∩I ẑj ;
xk+1 ←− xk, Wk+1 ←−Wk \ {j};

end
else

Compute αk from (3.25);
xk+1 ←− xk + αkpk;
if blocking constraints then

Add one blocking constraints to Wk to form Wk+1;
else
Wk+1 ←−Wk;

end
end

end

Pros and Cons: Similarly to the Dual Simplex Method, Dual Active-Set Methods can work
very well in practice, especially on small-sized QPs. On the positive side, hot-start (typically
reusing the previous factorization) strategies can easily be incorporated in this setting. This
is usually key for solving cascades of similar QPs, which is common in applications such as
sequential quadratic programming (SQP) and model predictive control (MPC). Finally, contrary
to Primal Active-Set Methods, no "Phase I" is required anymore. Popular Dual Active-Set-based
solvers include the open-source quadprog [Goldfarb and Idnani, 1983], QPNNLS [Bemporad,
2015] and DAQP [Arnström et al., 2022].

Yet, Dual Active-Set Methods have limited scalability, struggle to exploit sparsity, and are
hard to early-stop at inexact solutions satisfying (3.10) at accuracy ϵabs (they tend to stop
only when a global solution is found, i.e., with ϵabs = 0). Moreover, they may require strong
assumptions, such as the QP being strictly convex or the constraint matrix being of full rank.
These assumptions can reduce their applicability and may cause robustness issues, such as
“active-set cycling” [Nocedal and Wright, 2006, sections 13.5 and 16.5].

Detailed implementation of quadprog [Goldfarb and Idnani, 1983]: In this section,
we focus more specifically about the implementation of quadprog algorithm.

Definition 2. Considering a subset J of [1, m], the Moore-Penrose generalized inverse
of CJ in the space of variables obtained under the transformation x̂ = H1/2x is noted NJ and
defined as [Goldfarb and Idnani, 1983, Equation 2.1]

NJ = (CJH−1C⊤
J )−1CJH−1. (3.29)

Furthermore, the reduced inverse Hessian operator for f subject to the active set of constraints
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CJ is noted G and is defined as [Goldfarb and Idnani, 1983, Equation 2.2]

G = H−1(I − CJNJ) = H−1 −H−1CH(CJH−1NJ)−1CJH−1. (3.30)

Dual Active-Set Methods generate dual feasible points at each iteration. For this reason, they
do not initially need a Phase I approach to generate primal feasible points. Furthermore, it can
be seen that starting from an empty feasible set W0 = ∅, it always holds that x0 = −H−1g (with
z0 = ∅) satisfies the dual feasibility requirement with respect to the equality constrained QP
formed without any constraints. So it is always possible to efficiently initialize Dual Active-Set
Methods provided H ∈ S++(Rn).

Assume that we have a working set Wk ̸= ∅ and iterates (xk, zk
Wk ≥ 0) which solves the

corresponding equality constrained QP:

min
x∈Rn

f(x)

s.t., C⊤
i x ≤ ui, i ∈ Wk.

(3.31)

If the set V = {i ∈ [1, m] \ Wk|C⊤
i xk − ui > 0} is empty, then (xk, zk) is a solution of (QP)

by extending zk to be zero on the complementary set of Wk. Otherwise, let’s pick a violating
constraint index i ∈ V .

The fundamental idea built on Dual Active-Set Methods relies on the fact that, starting from
xk, the primal step direction d = GC⊤

i ensures that ∀t ∈ Rn, x̂ = xk + td satisfies

G(Hx̂ + g) = 0, (3.32)
C⊤

j x̂− uj = 0, ∀j ∈ Wk, (3.33)

ẑ = NWk∪{i}(Hx̂ + g) = NWk∪{i}xk + t

[
r
1

]
, (3.34)

C⊤
i x̂− ui = C⊤

i xk − ui + td⊤(C⊤
i ). (3.35)

with r = NWk
C⊤

i [Goldfarb and Idnani, 1983, Lemma 1]. It follows immediately that provided
d ̸= 0 the point x̂ = x + tpd minimizes the quadratic f over {x ∈ Rn|C⊤

j x = uj , j ∈ Wk ∪ {i}},
where

tp = −C⊤
i xk−ui

d⊤C⊤
i

. (3.36)

If ẑ ≥ 0, then (x̂, ẑ) is a solution to the QP subproblem formed with the inequality constraints
indexed by Wk ∪ {i}. Otherwise, there exists td < tp, where

td = min
{

min
j s.t., rj>0

NWk∪{i}(xk)j

NWk (xk)j
,∞
}

, (3.37)

such that there always exists some components of NWk∪{i}(xk + td) < 0 for t ∈ (td, tp) [Goldfarb
and Idnani, 1983, Theorem 1]. If we drop one such component id from the working set Wk,
then it holds that x̂ = xk + tdd satisfies the following with the set Wk [Goldfarb and Idnani,
1983, Theorem 1]

C⊤
j x̂− uid

> 0, (3.38)
C⊤

l x̂ = ul, ∀l ∈ Wk \ {id}, (3.39)
G(Hx̂ + g) = 0 (3.40)

NWk
x̂ ≥ 0. (3.41)

x̂ thus corresponds to the optimal solution of the QP subproblem indexed by Wk and for which
the idth constraint is replaced by C⊤

id
x ≤ C⊤

id
x̂. We are then back to the situation of (3.31).
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The following procedure shows that starting from xk, Wk and a violating constraint index
i, we either obtain an optimal solution x̂ for Wk ∪ {i}, or a new point x̂ solving subproblem
indexed by Wk \ {id} with a dropped constraint id. Notably, under the regularity assumptions
provided (H ∈ S+

++, full rank of C), it is guaranteed to find in a finite number of steps a global
solution or problem infeasibility (i.e., tp = td =∞) [Goldfarb and Idnani, 1983, Theorem 3]. The
detailed algorithm is provided in Algorithm 3.

Finally, let us mention that rather than computing G and Nk, current implementation store
and update the matrices J1 = Q⊤

1 L−1, J2 = Q⊤
2 L−1 and R obtained from the Cholesky and QR

factorizations of H = LL⊤ and L−1CWk
= [Q1 Q2]

[
R
0

]
. Indeed, such decompositions provide

the required operators through
G = J2J⊤

2 ,

Nk = R−1J⊤
1 .

(3.42)

G and Nk can then be efficiently updated using QR decomposition updates (or downdates)
following, for example [Goldfarb and Idnani, 1983, Section 5].
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Algorithm 3: Dual Active-Set Methods
Initialization:

• initial S-pair: x0 = −H−1g , W0 = ∅, z0 = 0

• temporary variables: q = 0 (cardinality of W0), G = H−1, v = 1
2g⊤x0

for k = 0, 1, ... do
Derive V = {i ∈ [1, m] \Wk|C⊤

i xk − ui > 0};
if V ̸= ∅ then

Choose a violated constraint i ∈ V ;

If q = 0, ẑ = 0, otherwise ẑ =
[
zk

0

]
;

Ŵ =Wk ∪ {i};
Derive d = GC⊤

i (step direction in primal space);
If q > 0, derive r = NkC⊤

i (negative of the step direction in dual space);
Compute tp (minimum step in primal space) following (3.36) (taking ∞ is d = 0);
Compute td (maximum step length in dual space) and an associated dropping
constraint index id ∈ [1, m] following (3.37) (taking ∞ if the set involved is
empty);
Compute step length t = min(tp, td) ;
if t =∞ (no step in primal or dual space) then

stop, (QP) is infeasible.
else

if tp =∞ (step in dual space) then

ẑ ←− ẑ + t

[
−r
1

]
;

Drop constraint id: Ŵ ←− Ŵ \ {id}, q ←− q − 1;
Update G and Nk (see (3.42)) ;
Compute a new step direction d;

else
xk+1 ←− x̂ + td (primal step);
v ←− v + td⊤Ci(1

2 t + ẑq+1);

ẑ ←− ẑ + t

[
−r
1

]
(dual step);

if If t = tp (full primal step) then
zk+1 ←− ẑ;
Add constraint i: Wk+1 ←− Ŵ ∪ {i}, q ←− q + 1;
New step: k ←− k + 1 and update V ;

else
Drop constraint id: Wk+1 ←− Ŵ \ {id}, q ←− q − 1;
Update G and Nk (see (3.42)) ;
Compute a new step direction;

end
end

end
else

stop, xk and zk forms a global optimal solution.
end

end
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3.2.4 Parametric Active-Set Methods

Algorithm summary: A variant of the Primal or Dual Active-Set Methods are Parametric
Active-Set Methods. They are centered around the idea of tracing the solution of a linear
homotopy parameterized by τ ∈ [0, 1] between a QP problem with known solution (τ = 0) and
the QP problem to be solved (τ = 1)

min
x(τ)∈Rn

1
2x(τ)⊤Hx(τ) + g(τ)⊤x(τ),

s.t., Cx(τ) ≤ u(τ),
(QP(τ))

where g(τ) and u(τ) are affine-linear functions of the homotopy parameter τ :

g(τ) = (1− τ)g0 + τg, (3.43)
u(τ) = (1− τ)u0 + τu, (3.44)

where g0 = 0 or u0 = 0 by default. It can be shown that the optimal solutions x(τ) depend
piecewise affine on τ . From solution x(τ) and a working set W(τ), the method consists of finding
appropriate step direction and step length (i.e., dτ , dx) to iteratively reach a solution of the QP
to be solved (τ = 1). Hence, similarly to previous active-set methods, Parametric Active-Set
Methods solve as subproblems equality constrained QPs (the subproblem considering the active
constraints of the current homotopy as equality constraints). Yet, compared to primal or dual
active set methods, each new iteration of parametric methods is neither primal nor dual feasible
by construction, except at convergence.

Convergence properties: Under the assumption that the matrix C is of full row rank, H
positive definite on the null-space of C, and the first multiplier solution z(0) > 0, then Parametric
Active-Set Methods are ensured to find either a global solution or infeasible certificates in a finite
number of steps [Best, 1996, Assumption 2.1 and Theorem 4.1].

Pros and Cons: A considerable advantage of Parametric Active-Set Methods is that they are by
design meant to use hot-starting and warm-starting strategies, which can be less straightforward
for Primal or Dual Active-Set Methods. Furthermore, they do not necessarily require the full
strict convexity of f , which makes them applicable to a wider range of QP problems than
other active-set methods. Such features make them particularly suited for solving sequential
quadratic programming (SQP) and model predictive control (MPC) tasks. A famous Parametric
Active-Set-based solver is the open-source qpOASES [Ferreau et al., 2014].

Yet, similarly to other active-set methods, Parametric Active-Set Methods have limited
scalability, struggle to exploit sparsity and are not robust to early termination. Moreover,
the assumption of C being of full rank may still cause robustness issues such as “active-set
cycling” [Nocedal and Wright, 2006, sections 13.5 and 16.5].

Detailed implementation of qpOASES [Ferreau et al., 2014]: Starting from a solution
point x(τ), z(τ) of (QP(τ)) with current workspace W(τ) it is possible to determine a step
direction (dx, dz) towards (QP(τ)) solution with τ = 1 by solving [Ferreau, 2006,Ferreau et al.,
2008] [

H C⊤
W(τ)

CW(τ) 0

] [
dx

−dzW(τ)

]
=
[
−(g(1)− g(τ))
uW(1) − uW(τ)

]
, (3.45)

and by letting dzWc(τ) = 0 with Wc(τ) the complementary set of W(τ). For solving (3.45)
saddle-point problem, an efficient option consists of using, for example, a null-space method
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(through a Cholesky factorization of the null-sparse projection of the Hessian, see [Ferreau et al.,
2014, Section 2.3.1] for example for practical details).

It is then possible to follow x(τ), z(τ) in the direction (dx, dz) along the current active set
until either an inactive constraint becomes active (primal blocking), or a dual variable of an
active constraint changes its sign (dual blocking). The step length dτ onto the first blocking
constraint can be determined using the ratio test function RT for u, v ∈ (Rm)2 [Ferreau et al.,
2014, Equations 11 and 12]

RT(u, v) 7→ min{ui/vi|1 ≤ i ≤ m, vi > 0}. (3.46)

The first blocking constraint is then given by

tp = RT(u(τ)− Cx(τ), Cdx), (3.47)

and the first blocking sign is changed by

td = RT(z(τ)W(τ), dz(τ)W(τ)). (3.48)

The step length is then defined as dτ = min(tp, td). The optimal solution is found if dτ = 1 since
there are no blocking constraints. Otherwise, if dτ = td, there is dual blocking constraint for
some constraint index j ∈ W(τ) realizing the ratio test (3.48). We consider removing it from the
new working set in such a case. If dτ = tp similarly to the primal active set method, we add a
blocking constraint index i, realizing the ratio test (3.47).

For either case, improvements exist for efficiently testing whether the new working sets formed
are linearly dependent and trying to find adequate exchange variables alternatively. We detail
them below.

If the new working set W(τ)+ is formed by the addition of a new constraint i, it can lead to a
rank deficiency of the matrix CW(τ)+ and thus loss of invertibility for (3.45). Linear dependence
of Ci can then be tested by solving[

H C⊤
W(τ)

CW(τ) 0

] [
p

qW(τ)

]
=
[
C⊤

i

0

]
, (3.49)

and Ci is linearly dependent on CW(τ) if and only if p = 0. If it happens, one strategy consists in
obtaining q from qW(τ) by letting ql = 0 if l ∈ W(τ+)c. Then we try updating the dual multiplier
considering the ratio test

λ⋆ = RT(−W+
i (W ⊙ y(τ+)),W+

i (W⊙q)), (3.50)

whereW+
i (W⊙v) is derived component-wise with the vectorW⊙v which equals vk if k ∈ W and

0 otherwise. If λ∗ = +∞, the parametric QP is infeasible. Otherwise, we can get a minimizing
exchange index for (3.50) noted ie and then update the constraint with

z(τ+)i = −λ⋆ (3.51)
z(τ+)k = z(τ+)k + λ⋆qk for k s.t., Wk ̸= 0. (3.52)

By construction z(τ+)ie = 0 and constraint ie can be removed from W(τ+) to restore linear
independence.

Finally, if the new working set W(τ)+ is formed by removing a constraint, it can lead to the
exposition of a direction of zero curvature in the null-space of CW(τ+). It can again cause loss of
invertibility in (3.45). Directions of zero curvature can be detected by solving[

H C⊤
W(τ)

CW(τ) 0

] [
s

ξW(τ)

]
=
[

0
−(ek)W(τ)

]
, (3.53)
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with ek ∈ Rm the kth unit vector. H is singular on the null-space of CW(τ)+) if and only if
ξW(τ+) = 0. Then, s solves

Hs = 0, Aks = −1, CW + s = 0, (3.54)

and all points x̃ = x(τ+) + σs, σ > 0 are also optimal solutions if x̃ is primal feasible. The
largest σ can be determined from the ratio test

σ = RT(u− Cx(τ+), Cs). (3.55)

If σ = ∞, then the parametric QP is unbounded beyond τ+, and in particular, in τ = 1.
Otherwise, let il be a minimizing index of a ratio set that delivered the minimizer σ in (3.55),
and let x(τ+) := x(τ+) + σs. By construction of σ, the constraint row il is active in x(τ+) and
can be added to the working set via W(τ+)←−W(τ+) ∪ {il}.

Algorithm 4: Parametric active set method
Initialization:

• x(0), z(0) primal-dual input from previous solved QP (or initialized at 0),

• W0 associated working set,

• τ = 0, and g(0), u(0) initialized at previous solved QP (or 0).

for k = 0, 1, ... do
Solve (3.45) to find dx and dz;
Find maximum homotopy step length dτ and possibly the index of a blocking
constraint i or a blocking multipliers sign change j from (3.47) and (3.48);
if dτ ≥ 1− τ then

stop with solution (x(τ) + (1− τ)dx, z(τ) + (1− τ)dz);
else

τ+ ←− τ + dτ ;
x(τ+)←− x(τ) + dτdx;
z(τ+)←− z(τ) + dτdz;
W(τ+)←−W(τ);
if i is blocking then
W(τ+)←−W(τ+) ∪ {i};
If W(τ+) is linearly dependent, try finding an exchange variable or stop due to
infeasibility (following (3.50));

else
if sign change of j is blocking then
W(τ+)←−W(τ+) \ {j};
If H has nonpositive curvature on the null-space of W(τ+), find an
exchange constraint index (following (3.55)); Otherwise stop due to
unboundedness of (QP);

else
τ ←− τ+, W(τ)←−W(τ+);
Find new step direction;

end
end

end
end
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3.3 Interior-Point method
This section presents the most popular interior-point method for convex QPs. It is based on a
direct extension of Mehrotra’s predictor-corrector originally developed for linear programs [Mehro-
tra, 1992]. Interior-point methods solve (QP) by applying Newton’s method to a sequence of
modified versions of the KKT conditions. Such a sequence follows a specific central path for
ensuring global convergence. The main steps are summarized below.

The KKT conditions (KKT) can be rewritten by introducing the slack vector s ≥ 0

Hx + C⊤z + g = 0,

Cx− s− u = 0,

sizi = 0, i = 1, 2, ..., m,

(s, s) ≥ 0.

(3.56)

Given a current iterate (x, s, z) that satisfies (s, z) > 0, we can define a complementarity
measure µ by

µ = s⊤z

m
. (3.57)

We can then derive path-following primal-dual methods by considering the perturbed KKT
conditions given by

F (x, s, z; σ, µ) =

Hx−AT λ + c
Cx− s− u
Y Λe− σµe

 = 0, (3.58)

where
Y = diag(y1, y2, ..., ym), Λ = diag(λ1, λ2, ..., λm), e = (1, 1, ..., 1)T ,

and σ ∈ [0, 1]. The solutions to (3.58) for all positive values of σ and µ define the central path,
which is a trajectory that leads to the solution of the quadratic program as σµ tends to zero.

By fixing µ and applying Newton’s method to (3.58), we obtain the linear systemH 0 −C⊤

C −I 0
0 Λ Y


dx

ds
dz

 =

 −rd

−rp

−ΛY e + σµe

 , (3.59)

where dx, ds, and dz are the step sizes for x, s, and z respectively, and rd, rp equal

rd = Hx− C⊤z + g,

rp = Cx− s− u.
(3.60)

We obtain the next iterate by setting

(x+, s+, z+) = (x, s, z) + α(dx, ds, dz), (3.61)

where α is chosen to retain the inequality (s+, z+) > 0 and possibly to satisfy various other
conditions (see, e.g., the different variants in [Nocedal and Wright, 2006, Chapter 16]).

Convergence properties: Primal-Dual Interior point methods converge globally under the
existence of a solution for (QP) [Monteiro, 1994]. The complexity of the method is typically
quadratic [Potra and Wright, 2000] and [Boyd and Vandenberghe, 2004, Chapter 11].
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Pros and Cons: Primal-dual interior-point methods [Wright, 1997, Chapter 16] became
popular in the 90s due to their good practical performances across a wide range of problems. On
the positive side, unlike active-set methods, they benefit from early termination and can easily
exploit the sparsity structure of the problem. Furthermore, they converge under far more robust
guarantees than active-set methods, and by construction, they also control the primal-dual gap.
Moreover, another considerable advantage is that the primal-dual interior point algorithm is
easy to implement and generalizes to a wide range of cones (linear, SOCP, SDP, exponential,
etc.). Its certainly explains its widespread use and implementations among numerous popular
solvers such as commercial solvers Gurobi [Optimization, 2020] and Mosek [Mosek, 2022],
closed-source BPMPD [Mészáros, 1999], and open-source solvers OOQP [Gertz and Wright,
2003], ECOS [Domahidi et al., 2013], CVXOPT [Andersen et al., 2013], qpSWIFT [Pandala
et al., 2019], HPIPM [Frison and Diehl, 2020], and Clarabel2.

Yet, because of the homotopy-based structure of this family of methods, one of their main
drawbacks is the difficulty of using them with warm-starting procedures when solving a sequence
of related QPs (e.g., for solving SQP or MPC tasks).

Detailed implementation (from [Nocedal and Wright, 2006]): In the predictor-corrector
algorithm, first an affine scaling step (dxaff, dsaff, dzaff) is derived from (3.59) with σ = 0. It
is then improved upon by computing a corrector step. To do so, the centering parameter is
estimated as σ =

(
µaff
µ

)3
with

µ = (sk)⊤zk

m
, (3.62)

µaff = (sk + α̂affdsaff)⊤(zk + α̂affdzaff)/m, (3.63)

for α̂aff = max
{

α ∈ (0, 1] | (sk, zk) + α(dsaff, dzaff) ≥ 0
}

.

The full correction step dx, ds, dz is then obtained as a solution of the following system:

H 0 −CT

C −I 0
0 Λ Y


dx

ds
dz

 =

 −rd

−rp

−ΛY e− dY affdΛaffe + σµe

 , (3.64)

The step lengths are finally selected via α = min(αpri
τ , αdual

τ ), where

αpri
τ = max{α ∈ (0, 1] : s + αds ≥ (1− τ)s},

αdual
τ = max{α ∈ (0, 1] : z + αdz ≥ (1− τ)λ}.

(3.65)

The parameter τ ∈ (0, 1) controls how far we are back off from the maximum step for which
the conditions s + αds ≥ 0 and z + αdz ≥ 0 are satisfied (usually τ ≈ 0.99). There exist other
variants with different step lengths for the primal and dual steps, which have demonstrated
numerically better performance (see for more details, e.g., [Nocedal and Wright, 2006, Chapter
16]).

2https://github.com/oxfordcontrol/Clarabel.rs

https://github.com/oxfordcontrol/Clarabel.rs
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Algorithm 5: Predictor-corrector Algorithm
Inputs:
x̂, ŝ, ẑ given by the user;
Initialization:
Set x0 = x̂, s0 = max(1, |ŝ + dsaff|), z0 = max(1, |ẑ + dzaff|), solving (3.59) with σ = 0 for
(dsaff, dzaff);

for k = 0, 1, ... do
Solve (3.59) with σ = 0 for (dxaff, dsaff, dzaff);
Calculate µ = (sk)⊤zk

m ;
Calculate α̂aff = max

{
α ∈ (0, 1] | (sk, zk) + α(dsaff, dzaff) ≥ 0

}
;

Calculate µaff = (sk + α̂affdsaff)⊤(zk + α̂affdzaff)/m;
Set centering parameter σ =

(
µaff
µ

)3
;

Solve (3.64) for (dx, ds, dz);
Choose τk ∈ (0, 1) and set α̂ = min(αprimal

τ , αdual
τ ) (see (3.65));

Set (xk+1, sk+1, zk+1) = (xk, sk, zk) + α̂(dx, ds, dz);
end

3.4 ADMM based-methods

The alternating direction method of multipliers (ADMM) [Glowinski and Marroco, 1975,Gabay
and Mercier, 1976, Fortin and Glowinski, 2000, Eckstein, 1989, Parikh and Boyd, 2014] is an
operator splitting method, which can be viewed as a simple variation of the classical alternating
projections algorithm for finding a point in the intersection of two convex sets. Roughly speaking,
ADMM adds a dual-state variable to the basic method, which substantially improves convergence.
Fundamentally, it stems from making ADMM a method equivalent to the Douglas-Rachford
spliting (DRS) [Gabay, 1983]. The latter method benefits from strong convergence guarantees
under relatively weak assumptions since it is known to be an averaged operator [Lions and
Mercier, 1979].

More formally, ADMM solves convex problems of the form

min
x∈Rn,z∈Rm

v(x) + w(z),

s.t., x = z,
(3.66)

where v and w may be nonsmooth or take on infinite values to encode implicit constraints. The
basic ADMM algorithm is

xk+1 = arg min
x∈Rn

v(x) + ρ/2∥x− zk − λk∥22,

zk+1 = arg min
z∈Rm

w(z) + ρ/2∥xk+1 − z − λk∥22,

λk+1 = λk − xk+1 + zk+1,

(ADMM)

where ρ > 0 is a step-size parameter and λ is the scaled dual variable associated with the
constraint x = z.

Overall this method can reliably provide solutions to modest accuracy after a relatively small
number of iterations and scale extremely well to solve large problems. Its benefits of being very
simple to implement (i.e., only a few lines of code) and applicable for a variety of conic constraint
types (see, e.g., [Garstka et al., 2021,O’Donoghue et al., 2016]). It is also naturally parallelizable.
In the rest of the section, we will detail two famous practical implementations of the ADMM
algorithm: (i) a primal version at the core of the OSQP solver [Stellato et al., 2020]; and (ii)
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another one that solves the homogeneous self-dual embedding problem from which stems the
SCS solver [O’Donoghue et al., 2016].

3.4.1 Primal version

Algorithm summary: A primal version of ADMM would consider solving directly the primal
problem (QP). It can equivalently be written with a supplementary slack variable z as

min
x∈Rn,z∈Rm

f(x),

Cx = z,

z ≤ u.

(3.67)

v and w can be chosen as follows for fitting to (3.67) formalism,

v(x, z) = f(x) + Ieq(x, z),
w(x, z) = IC(z),

(3.68)

where Ieq and IC are the indicator functions given by the equations:

Ieq(x, z) =
{

0 if Cx = z,

+∞ otherwise,
IC(z) =

{
0 if z ≤ u,

+∞ otherwise,
(3.69)

The problem (3.67) can then be rewritten as the equivalent

min
(x̂,ẑ)∈Rn×Rm

(x,z)∈Rn×Rm

v(x̂, ẑ) + w(x, z),

(x̂, ẑ) = (x, z).
(3.70)

An iteration of ADMM consists of the following steps:

(x̃k+1, z̃k+1)← arg min
(x̃,z̃):Cx̃=z̃

(
f(x̃) + σ

2 ∥x̃− xk + 1
σ

wk∥22 + ρ

2∥z̃ − zk + 1
ρ

yk∥22
)

, (3.71a)

xk+1 ← αx̃k+1 + (1− α)xk + 1
σ

wk, (3.71b)

zk+1 ← ΠC

(
αz̃k+1 + (1− α)zk + 1

ρ
yk
)

, (3.71c)

wk+1 ← wk + σ
(
αx̃k+1 + (1− α)xk − xk+1

)
, (3.71d)

yk+1 ← yk + ρ
(
αz̃k+1 + (1− α)zk − zk+1

)
, (3.71e)

where σ > 0 and ρ > 0 are the step-size parameters, α ∈ (0, 2) is a relaxation parameter, and ΠC
denotes the Euclidean projection onto the set defined by IC . The introduction of the splitting
variable x̃ ensures that the subproblem in (3.71a) is always solvable.

Convergence properties: It has been shown [Banjac et al., 2019] that the sequence provided
by (3.71) converges globally if there exists a solution for (QP). Moreover, ADMM-based methods
are known to typically have a linear rate of convergence [Nishihara et al., 2015]3.

3Note that the mentioned result is shown for strictly convex QP.
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Pros and Cons: Apart from the previously mentioned advantages of ADMM-based methods
(i.e., simple, scalable, strong convergence properties), it can naturally exploit the sparsity
structure of the problem. It can also easily be warm-started and hot-started with previous matrix
factorization, which makes it particularly efficient for MPC or SQP-type tasks. The method
also benefits from an early termination strategy, which can be useful for some tasks, such as
embedded applications. All these advantages certainly explain its widespread use. A popular
open-source implementation of this algorithm is the well-known OSQP [Stellato et al., 2020].

Yet, this method depicts a relatively slow convergence rate, particularly for reaching high
accuracies. Moreover, the primal ADMM-based version presented here has only an asymptotic
control over the primal-dual gap, making it practically less attractive for some applications
requiring accurate control over it.

Detailed implementation of OSQP [Stellato et al., 2020]: We detail in this part how
solving (3.71a). Evaluating the ADMM step (3.71a) involves solving the equality constrained QP

min
x̂∈Rn

ẑ∈Rm

f(x̂) + σ

2 ∥x̃− xk∥2 + ρ

2∥z̃ − zk + ρ−1yk∥2

s.t., Cx̃ = z̃.

(3.72)

The optimality conditions for this equality-constrained QP are:

Hx̃k+1 + g + σ(x̃k+1 − xk) + C⊤νk+1 = 0, (3.73a)
ρ(z̃k+1 − zk) + yk − νk+1 = 0, (3.73b)
Cx̃k+1 − z̃k+1 = 0, (3.73c)

where νk+1 ∈ Rm is the Lagrange multiplier associated with the constraint Cx = z. By
eliminating the variable z̃k+1 from (3.73b), the above linear system reduces to[

H + σI C⊤

C −ρ−1I

] [
x̃k+1

νk+1

]
=
[

σxk − g
zk − ρ−1yk

]
, (3.74)

with z̃k+1 recoverable as

z̃k+1 = zk + ρ−1(νk+1 − yk). (3.75)

The linear system (3.74) can be solved using a direct method by first factoring the KKT
matrix (with for example an LDLT factorization) and then performing forward and backward
substitution. Since the KKT matrix remains the same for every iteration of ADMM, only one
factorization is needed. The factors can be cached and reused in subsequent iterations. This
approach is very efficient when the factorization cost is considerably higher than the cost of
forward and backward substitutions, so that each iteration is computed quickly. Note that if ρ
or σ change, the KKT matrix needs to be factored again.

With large-scale QPs, factoring linear system (3.74) might be prohibitive. In these cases it
might be more convenient to use an indirect method by solving instead the linear system

(H + σI + ρC⊤C)x̂k+1 = σxk − g + C⊤(ρzk − yk), (3.76)

obtained by eliminating νk+1 from (3.74). Note that the coefficient matrix in the above linear
system is always positive definite. The linear system can therefore be solved with an iterative
scheme such as the conjugate gradient method [Van Loan and Golub, 1996,Nocedal and Wright,
2006].
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Algorithm 6: OSQP algorithm
Inputs: x0, z0, y0 and parameters ρ > 0, σ > 0, α ∈ (0, 2),
while termination criterion is satisfied do

x̂k+1, ẑk+1 as solution to (3.74);
ẑk+1 ←− zk + ρ−1(νk+1 − yk);
xk+1 ←− αx̂k+1 + (1− α)xk;
zk+1 ←− ΠC(αẑk+1 + (1− α)zk − zk+1);
yk+1 ←− yk + ρ(αẑk+1 + (1− α)zk − zk+1);

end

3.4.2 Homogeneous self-dual embedding version

Algorithm summary: The algorithm considers solving more general conic constrained prob-
lems which writes down in standard form

min
x∈Rn

g⊤x,

s.t., Cx + s = u,

(x, s) ∈ Rn ×K,

max
z∈Rm

−u⊤z,

s.t., − C⊤z + r = g,

(r, z) ∈ {0}n ×K⋆,

(3.77)

Here, x ∈ Rn and s ∈ Rm are the primal variables, and r ∈ Rn and y ∈ Rm are the dual
variables. We refer to x as the primal variable, s as the primal slack variable, y as the dual
variable, and r as the dual residual. The set K is a nonempty, closed, convex cone with dual
cone K⋆, and {0}n is the dual cone of Rn, so the cones Rn ×K and {0}n ×K∗ are duals of each
other. The problem data are C ∈ Rm×n, b ∈ Rm, g ∈ Rn, and the cone K.

The original pair of problems (3.77) can be converted into a single homogeneous self-dual
embedding problem [O’Donoghue et al., 2016, Section 2.3]:

r
s
κ


︸︷︷︸

def= t

=

 0 CT g
−C 0 u
−gT −uT 0


︸ ︷︷ ︸

def= Q

x
y
τ


︸︷︷︸
def= h

, (x, y, τ, r, s, κ) ∈ Rn ×K⋆ × R+︸ ︷︷ ︸
def= C

×{0}n ×K ××R+︸ ︷︷ ︸
def= C⋆

, (3.78)

which is hence equivalent to

Find (t, h) ∈ C × C⋆ s.t., t = Qh. (3.79)

This embedding introduces two new variables, τ and κ, that are nonnegative and complemen-
tary, i.e., at most one is nonzero. Any solution of the self-dual embedding (x, s, r, y, τ, κ) falls
into one of three cases:

• τ > 0, κ = 0: (x/τ, y/τ, s/τ) is a primal dual solution,

• τ = 0, κ > 0:

– if u⊤y < 0 then the (QP) is primal infeasible,

– if g⊤x < 0, then the (QP) is dual infeasible,

• τ = κ = 0: the problem is primal or dual infeasible.
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Problem (3.79) can thus be written under the formalism (3.66) by choosing v = IC×C⋆ and
w = IQh=t

min
t,h∈C×C⋆

t̂,ĥ∈C×C⋆

IC×C⋆(t, h) + IQt=h(t̂, ĥ),

(t, h) = (t̂, ĥ),
(3.80)

where IS is the indicator function of the set S. Hence the ADMM iterations write down

(t̂k+1, ĥk+1)←− ΠQt=h(tk + λk, hk + µk), (3.81a)
tk+1 ←− ΠC(t̂k+1 − λk), (3.81b)
hk+1 ←− ΠC⋆(ĥk+1 − µk), (3.81c)
λk+1 ←− λk − t̂k+1 + tk+1, (3.81d)
µk+1 ←− µk − ĥk+1 + hk+1, (3.81e)

with ΠS the Euclidean projection onto set S, and λ and µ are dual variables for the equality
constraints on t and h respectively.

Convergence properties: It has been shown [O’Donoghue et al., 2016] that the sequence
provided by (3.81) converges globally as soon as there exists a solution for (3.79). Moreover
ADMM-based methods are known to have typically a linear rate of convergence [Nishihara et al.,
2015]4.

Pros and Cons: Apart from previously mentioned advantages of ADMM-based methods
(simple, scalable, strong convergence properties), it can naturally exploit the sparsity structure of
the problem. It can also easily be warm-started and hot-started with previous matrix factorization
which makes it particularly efficient for MPC or SQP type tasks. The method benefits as well of
early termination strategy which can be use-full for some tasks such as embedded applications.
Contrary to the previous one, this ADMM-based version works for a broader range of cones.
Furthermore, by construction, it directly controls the primal-dual gap. All these advantages
certainly explain its widespread use. A popular open-source implementation of this algorithm is
the well-known SCS [O’Donoghue et al., 2016].

Yet, this method depicts a relatively slow rate of convergence, particularly for reaching high
accuracies. Moreover, since the primal ADMM-based version exploits more the structure of QPs,
this more generic method can be slower for solving some standard QP problems.

Detailed implementation of SCS [O’Donoghue et al., 2016]: In this part we detail how
solving (3.81a) and simplifying other iterations considering the problem conic problem structure.

Step (3.81a) amounts to compute a projection onto Q by solving

min
t,h

[1
2∥t− tk − hk∥22 + 1

2∥h− tk − hk∥22
]

s.t. h = Qt, (3.82)

with variables t and h. The KKT conditions for this problem are[
I Q⊤

Q −I

] [
t
µ

]
=
[
tk + hk

tk + hk

]
, (3.83)

where µ ∈ Rm+n+1 is the dual variable associated with the equality constraint Qt = h = 0. By
eliminating µ, we obtain

t̃k+1 = (I + Q⊤Q)−1(I −Q)(tk + hk). (3.84)
4Note that the mentioned result is shown for strictly convex QP.
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Since the matrix Q is skew-symmetric, it thus simplifies to

t̂k+1 = (I + Q)−1(tk + hk). (3.85)

The linear system in (3.85) can be efficiently solved using direct methods or indirect methods
(e.g., conjugate gradient (CG) methods). For more details we refer the reader to [O’Donoghue
et al., 2016, Section 4.1]. Combining these simplifications, the final algorithm is summarized
in Algorithm 7.

Algorithm 7: SCS algorithm
Inputs: t0, h0,
while termination criterion is satisfied do

t̂k+1 = (I + Q)−1(tk + hk);
tk+1 = ΠC(t̂k+1 − hk);
hk+1 = hk − t̂k+1 + tk+1;

end

3.5 Proximal Augmented Lagrangian-based methods
This family of methods is primarily based on the idea of Lagrangian relaxations with an additional
quadratic penalization term (possibly piecewise) to encourage the feasibility of the iterate (see,
e.g., [Nocedal and Wright, 2006, Section 17.3]). This kind of technique emerged in the 70s
through the works of Hestenes and Powell [Powell, 1969,Hestenes, 1969] and then later with those
of Rockafellar [Rockafellar, 1976a], which emphasized their link with the so-called “proximal-
point method”. Indeed, Augmented Lagrangian (AL)-type methods naturally arise by applying
proximal-point methods on either the dual or saddle-point formulations to (QP), thereby offering
the advantage, similarly to the DRS operator, of converging under relatively weak assumptions.
Yet, these methods differ from ADMM-based methods in at least two practical structural ways:
(i) AL-based methods can converge at a sharper rate than ADMM-based approaches, and they
do not either struggle to converge to high accuracy levels; (ii) yet AL-based approaches have
less scalability than ADMM-based approaches: among others, they do not benefit from obvious
parallelization, and they require a priori case by case methods for solving subproblems the best
efficient way.

We review in this section the Method of Multipliers (MM), the Proximal Method of Multipliers
and a Primal-Dual Proximal-Augmented Lagrangian Method of Multipliers. Finally, we end the
section with a discussion about practical ingredients that are key when implementing AL-based
approaches.

3.5.1 Method of Multipliers

Algorithm summary: The method of multipliers (MM) is based on the minimization of
the augmented Lagrangian (AL) penalty function. The so-called AL function [Rockafellar,
1976a, Section 4] relies on augmenting the cost function f with a shifted ℓ2 penalization of the
constraint (i.e., Cx− u) with respect to a weighted dual multipliers µz:

LA(x, z; µ) def= f(x) + 1
2µ

(
∥[Cx− u + µz]+∥2

2 − ∥µz∥2
2
)

,

where µ > 0 is a positive penalty parameter. In the case where we replace the inequality
constraints Cx ≤ u of (QP) by equalities Cx = u, this would be equivalent to augmenting the
standard Lagrangian L with a weighted penalization:

LA(x, z; µ) = L(x, z) + 1
2µ∥Cx− u∥22.



3.5 Proximal Augmented Lagrangian-based methods 36

Many optimization strategies rely on alternating (i) minimizing LA with respect to the primal
variables, and (ii) maximizing LA with respect to the dual variables. MM [Hestenes, 1969,Powell,
1969] is one such strategy, where the maximization step (ii) is computed in closed-form. More
precisely, considering some sequence {µk}k bounded below by some µ∞ > 0:

xk+1 = arg min
x∈Rn

LA(x, zk; µk),

zk+1 = arg max
z∈Rm

LA(xk+1, z; µk) =
[
zk + 1

µk (Cxk+1 − u)
]

+
.

Yet, in the presence of inequality constraints, the exact minimization of LA(x, zk; µk) with
respect to x is generally hard to compute in closed-form since x 7→ LA(x, zk; µk) is piece-wise
quadratic [Sun, 1997]. For this reason, practical MM solvers typically rely on ϵk-approximate
solutions for computing xk+1:

xk+1 ≈ϵk arg min
x∈Rn

LA(x, zk; µ),

zk+1 =
[
zk + 1

µ(Cxk+1 − u)
]

+
,

(3.86)

for some notion of “≈ϵk”. Note, that since LA is by construction a Moreau envelop of the
Lagrangian with respect to the dual variable it is a C1 function [Parikh and Boyd, 2014]. Hence,
for instance, we can use:

∥∇xLA(xk+1, zk; µk)∥∞ ≤ ϵk.

For ensuring convergence of the numerical scheme, one typically needs to enforce certain properties
on ϵk and {µk}k. For instance, it is clear that one must have ϵk → 0; other conditions
include summability of the sequence {ϵk}k, see, e.g., [Conn et al., 1991, Nocedal and Wright,
2006,Rockafellar, 1976a]. The boundedness condition on {µk}k turns out also to be necessary
for ensuring convergence [Rockafellar, 1976a].

Convergence properties: It turns out that MM can be seen as a proximal point method
applied to (Dual-QP), see [Rockafellar, 1976a, Section 4]. Therefore, it is guaranteed that
{zk}k converges to an optimal solution to (QP) if one exists [Rockafellar, 1976a, Theorem 4].
Furthermore, {xk}k is a minimizing sequence, i.e., f(xk) −→ minx∈Rn f(x). Note that {xk}k does
not necessarily converge to a solution to (QP) [Rockafellar, 1976a]. This equivalence between
MM and the dual proximal point algorithm also allows MM to inherit a key property for handling
primal infeasible problems. Indeed, assuming (Dual-QP) to be feasible, the dual iterates of MM
actually converge linearly to a solution of the dual to the following hierarchical problem [Chiche
and Gilbert, 2016]:

s⋆ = arg min
s∈Rm

1
2∥s∥

2
2

s.t. x⋆, z⋆ ∈ arg min
x∈Rn

max
z∈Rm

+
L(x, z, s),

(QP-H)

with L(x, z, s) def= f(x) + z⊤(Cx− u− s) (namely the Lagrangian of (QP) augmented with a shift
variable s). Under strict convexity of f , it results that as soon as (QP) is primal infeasible (i.e.,
there is no x s.t. Cx ≤ u), then MM will converge towards a solution (x⋆, z⋆) of (QP-H). Such a
solution satisfies the following KKT optimality conditions:

Hx⋆ + g + C⊤z⋆ = 0,

Cx⋆ ≤ u + s⋆,

(x⋆)⊤Hx⋆ + g⊤x⋆ + (u + s⋆)⊤z⋆ = 0.
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In other words, s is the smallest possible (measured in ℓ2 norm) shift on the constraints that
makes (QP) feasible.

T. Rockafellar’s general theory on the proximal point algorithms has established that under
the existence of a unique solution for the dual of (QP), the primal iteration sequence generated
by the MM enjoys an asymptotic Q-superlinear convergence rate. It has also been shown that
under some assumptions of a variant of the MM, it exhibits asymptotically one inner iteration per
outer iteration [Conn et al., 1992b]. More recent work [Cui et al., 2016] extended T. Rockafellar’s
results in the context of both the existence of multiple solution for the problem and a wider class
of conic problems (namely Semi-Definite Programs, yet under stronger assumptions). It has also
been established the asymptotic R-superlinear convergence of the dual iterate.

Pros and Cons: The MM benefits from being efficient in practice for a wide class of problems.
Along with its sharp rate of convergence, this method enjoys a number of practical features for
solving MPC or SQP tasks: warm-starting, hot-starting factorization, early-stopping, exploiting
sparsity. A popular open-source implementation of a MM-based approach is the LANCELOT
solver designed for solving also non linear programs [Conn et al., 1992a].

Yet, the MM does not guarantee convergence of the primal iterates, which reduces its
robustness. Furthermore, since the inner loops are also only convex, the subproblems are not
necessarily that simple to solve (even-though they are already unconstrained). Finally, setting
the penalization parameter ϵk and µ can be tedious while it considerably affects the practical
performance. Several strategies have been proposed in this sense [Bertsekas, 1982,Birgin and
Martínez, 2014,Conn et al., 1991].

Detailed implementation: The sequential, approximate minimization of the Augmented
Lagrangian penalty function can be performed in a trust region framework [Conn et al., 1992b]. We
refer the reader to this specific work and more generally to [Nocedal and Wright, 2006, Chapters
3 and 4] for other strategies dedicated for solving unconstrained problems.

3.5.2 Proximal-Augmented Lagrangian Method

Algorithm summary: The proximal method of multipliers (PMM) is an extension of the MM
with stronger convergence guarantees. For a certain ρ > 0 (1/ρ corresponds to a step-size), PMM
relies on an additional proximal term on the primal variables with [Rockafellar, 1976a, Equation
1.9], considering an additional sequence {µk}k bounded below by some µ∞ > 0:

(xk+1, zk+1) = arg min
x∈Rn

max
z∈Rm

+
L(x, z) + ρ

2∥x− xk∥22 −
µk

2 ∥z − zk∥22. (3.87)

Assuming that one can solve (3.87), one can generate a sequence {(xk+1, zk+1)}k that converges
to a primal-dual optimal pair for (QP). However, (3.87) involves a convex-concave saddle-point
problem, for which numerous numerical methods exist yet closed-form solutions can seldom
be found. For solving this problem, a natural strategy consists in splitting the optimization
procedure in two parts: {

xk+1 = arg minx∈Rn Φk
ρ,µk(x),

zk+1 = arg maxz∈Rm
+
L(x, z)− µk

2 ∥z − zk∥22,

where Φk
ρ,µk(x) def= LA(x, zk; µk) + ρ

2∥x − xk∥22 is often referred to as the Proximal augmented
Lagrangian [Hermans et al., 2019], and where the second line can be computed in closed form as
zk+1 =

[
zk + 1

µk (Cxk+1 − u)]
]

+
. As with MM, one generally needs to rely on numerical methods
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for the first minimization stage, which we can only solve approximately: xk+1 ≈ϵk arg minx∈Rn Φk
ρ,µk(x),

zk+1 =
[
zk + 1

µk (Cxk+1 − u)
]

+
,

(3.88)

for some notion of “≈ϵk”. For instance, we can use:∥∥∥∇xΦk
ρ,µk(xk+1)

∥∥∥
∞
≤ ϵk. (3.89)

Again, it is clear that convergence of {(xk, zk)} towards a primal-dual solution requires certain
properties of the approximation error, such as ϵk → 0. Other conditions include summability
of {ϵk}k, and {µk} being bounded from below by some µ∞ > 0, see, e.g., [Rockafellar, 1976a,
Theorem 5].

Convergence properties: PMM enjoys the key advantage of guaranteed primal-dual con-
vergence of its iterates under relatively weak assumptions, namely the existence of an optimal
primal-dual pair with zero duality gap [Luque, 1984, Proposition 1.2]. This guarantee is stronger
than that of MM, for which only the dual variables are guaranteed to converge [Rockafellar,
1976a, Theorem 4]. Furthermore, the proximal augmented Lagrangian function is a piece-wise
quadratic strongly convex function, unlike the augmented Lagrangian x 7→ LA(x, zk; µk) which
is only guaranteed to be convex. This allows accelerating the computation of the iterates, e.g.,
using quadratic Newton-type methods [Hermans et al., 2021]. We leverage this key feature in
ProxQP, as further detailed in Section 4.1.4. Finally, Remark 1 highlights that more generally
to MM methods, PMM both towards the primal-dual pair of the closest feasible QP solution,
which is useful when (QP) is infeasible.

Remark 1 (Convergence towards solutions of (QP-H)). It can be proven following [Chiche and
Gilbert, 2016] that if (QP) is primal infeasible, its dual (Dual-QP) is feasible, and {µk}k is a
sequence satisfying ∀k ∈ N, µk ≥ µ∞ for some µ∞ > 0, then, the sequence {(xk, zk)} generated
by (3.87) converge to a solution of (QP-H).

PMM also exhibits a typical linear global rate of convergence for their approach [Rockafellar,
1976a,Hermans et al., 2021]. [Luque, 1984] proposes a more general analysis of the asymptotic
convergence of the proximal point algorithm (PPA) for the solution of equations of type 0 ∈ Tz,
where T is a multivalued maximal monotone operator in a real Hilbert space (PMM is hence a
particular case of PPA). The convergence rate depends on how rapidly T −1 grows away from
the set of solutions W . When this growth is bounded by a power function with exponent
s, then for a sequence {wk} generated by PPA, {∥zk −W∥}k converges to zero like o(k−s/2),
linearly, superlinearly, or in a finite number of iterations according to whether s ∈ (0, 1), s = 1,
s ∈ (1, +∞), or s = +∞. For PMM applied to QPs, the KKT conditions form a polyhedral
variational inequality, so we know the solution map is outer Lipschitz continuous and its constant
typically depends on the QP at hand. Hence, that’s why we can conclude that the convergence
rate is typically at least linear.

Pros and Cons: A considerable advantage from PMM is that is converges globally under weak
conditions (i.e., existence of a solution for (QP)). Furthermore, similarly to MM, this method
enjoys a number of practical features for solving MPC or SQP tasks: warm-starting, hot-starting
factorization, early-stopping, exploiting sparsity. An open-source implementation of a PMM-
based approach is the QPALM solver designed for solving also non convex programs [Hermans
et al., 2021].

Even-though the PMM converges globally under weak assumptions, it can be sensitive to
ill-conditioning [Bambade et al., 2022, Section IV-B] because of quadratic matrix products (such
as C⊤C) involved for solving (3.88). This will be studied with more details in Section 3.5.3.
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Detailed implementation: We detail in this part how solving the inner loop involved in the
first step of (3.88).

The Proximal Augmented Lagrangian penalty function Φk
ρ,µk is a strictly convex piece-wise

quadratic, which is hence semi-smooth [Mifflin, 1977]. Thus its unique minimum can be found in
finite time using a semi-smooth Newton method with exact line-search (see, e.g., convergence
proof in [Sun, 1997, Theorem 3] and algorithm in [Hermans et al., 2019, Section IV.C]). Practically
speaking, the semi-smooth Newton method is initialized at x̂(0) = xk and generates a sequence
x̂(1), x̂(2), . . . via the update rule:

x̂(l+1) = x̂(l) + α⋆dx, (3.90)

where the step-size α⋆ is computed via an exact line-search:

α⋆ = arg min
α≥0

Φk
ρ,µk(x̂(l) + αdx), (3.91)

(note that α 7→ Φk
ρ,µk(x̂(l) +αdx) is a continuous piecewise quadratic function with a finite number

of breaking points), and where dx is found by solving a linear system of equations [Hermans
et al., 2021, Equation 3.4]:[

H + ρI C⊤
Ik(x̂(l))

CIk(x̂(l)) −µkIIk(x̂(l))

] [
dx
dz

]
=
[
−∇xΦk

ρ,µk(x̂(l))
0

]
, (3.92)

where Ik(x̂(l)) def= {i ∈ [1, m] |Cix̂
(l) − ui + zk

i µk > 0} refers to the active set of the current
subproblem, and CIk(x̂(l)) corresponds to a reduced version of the matrix C containing the active
rows indexed by Ik(x̂(l)).

This iterative process is repeated until reaching the accuracy requirement (3.89); that is, as
soon as ∥∇Φk

ρ,µk(x̂(l))∥∞ ≤ ϵk it outputs xk+1 ← x̂(l) as an approximate solution. In practice,
the linear system (4.1.4) can be solved efficiently via LDLT factorization of this indefinite system.
Furthermore ϵk typically evolves at an exponential decay rate (i.e., ϵk+1 = τϵk for some τ ∈
(0, 1) [Hermans et al., 2021]), and µk is decreased only when the primal violation ∥[Cxk+1−u]+∥∞
is not small enough compared to previous outer-iterate primal violation ∥[Cxk − u]+∥∞ (see for
more details [Birgin and Martínez, 2014,Hermans et al., 2021]).

3.5.3 Primal-Dual Proximal-Augmented Lagrangian Method

Primal-dual proximal methods of multipliers (PDPMM) is an alternative formulation of PMM.
Its name stems from its choice of a primal-dual penalty function for evaluating the quality of the
iterates of the sequence of proximal sub-problems. When intermediary optimization subproblems
are solved exactly, PMM and PDPMM produce the same iterates. Thereby, PDPMM benefits
from the strong convergence properties of PMM. However, the alternate formulation of PMM is
convenient and can be leveraged at computation time, and we leverage it in our algorithms.

Algorithm summary: The author of [Marchi., 2021] shows that (3.87) can be equivalently
reformulated as a minimization of the following primal-dual merit function:

Mk
ρ,µ(x, z) def= f(x) + 1

µ

∥∥∥[Cx− u + µ(zk − z
2)]+

∥∥∥2

2
+ ρ

2∥x− xk∥22 + µ
4∥z∥

2
2. (3.93)

Hence (3.87) is equivalent to:

(xk+1, zk+1) = arg min
x∈Rn,z∈Rm

Mk
ρ,µk(x, z). (3.94)
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Of course, solving this optimization step still requires using numerical schemes, and can therefore
only be approximated:

(xk+1, zk+1) ≈ϵk arg min
x∈Rn,z∈Rm

Mk
ρ,µk(x, z), (3.95)

for some notion of “≈ϵk”. For instance, [Marchi., 2021] uses:∥∥∥∥∥
[

∇xf(xk+1) + C⊤zk+1 + ρ(xk+1 − xk)
[Cxk+1 − u + µk(zk − zk+1/2)]+ − µkzk+1/2

]∥∥∥∥∥
∞
≤ ϵk.

The ProxQP algorithm relies on a similar error criterion which will be detailed in Section 4.1.4.

Convergence properties: As for PMM, the recurrence (3.95) guarantees that {(xk, zk)}k
converges to an optimal primal-dual pair under the relatively weak assumptions (the same as
in (3.88): as soon as there exists a solution to (QP), and {µk}k is bounded below by some
µ∞ > 0). Furthermore, Mk

ρ,µk is both strongly convex and piece-wise quadratic with respect to
both the primal and the dual variables. Hence, as for Φk

ρ,µ, its minimization can be performed
efficiently using semi-smooth Newton-type methods. As we show in the "Detailed Implementation"
section below, the linear systems induced by the minimization of Mk

ρ,µk are naturally better
conditioned than those arising from Φk

ρ,µk , which is due to the fact that this formulation naturally
avoids quadratic matrix multiplications (such as C⊤C). As for PMM it can be shown that
the convergence rate is typically at least linear. Finally, Remark 1 also guarantees that more
generally to MM methods, PMM and PDPMM both converge towards the primal-dual pair of
the closest feasible QP solution, which is useful when (QP) is infeasible.

Pros and Cons: As for PMM, a considerable advantage from PDPMM is that it converges
globally under weak conditions (i.e., the existence of a solution for (QP)). Furthermore, as MM
this method enjoys a number of practical features for solving MPC or SQP tasks: warm-starting,
hot-starting factorization, early-stopping, exploiting sparsity. An open-source implementation
of a PMM-based approach is the QPDO solver [Marchi., 2021]. Contrary to PMM, PDPMM
enables better structure for being less sensitive to ill-conditioning. Its stems from the fact that it
can eliminate quadratic matrix products involved in the internal Newton semi-smooth method
used. We detail the calculation in the next paragraph.

Detailed implementation: The inner loop for PDPMM uses exactly the same strategy as for
PMM. So we refer the reader to Section 3.5.2 for its detailed implementation. We give below
more insights about the numerical conditioning of the linear systems obtained with PDPMM.

For PMM, the gradient involved at lth iteration of a semi-smooth Newton method applied
to Φk

ρ,µk is expressed as:

∇xΦk
ρ,µk(x̂l) = Hx̂(l) + g + ρ(x̂(l) − xk) + C⊤

[
zk + 1

µk (Cx̂(l) − u)
]

+
. (3.96)

For either low values of µk or ill-conditioning of CIk(x̂(l)), the evaluation of the gradient is
numerically challenged by the value 1

µk C⊤
Ik(x̂(l))CIk(x̂(l)) (see, e.g., [Nocedal and Wright, 2006,

Chapter 17.4] which gives examples about ill-conditioning resulting from such structures).
When working with Mk

ρ,µ, it is possible to eliminate such square matrix products. A semi-
smooth Newton step applied to Mk

ρ,µ,, and initialized at (x̂(0), ẑ(0)) = (xk, zk) involves finding at
lth inner itertion dw = (dx, dz) satisfying:

∇2Mk
ρ,µk(x̂(l), ẑ(l))dw +∇Mk

ρ,µk(x̂(l), ẑ(l)) = 0, (3.97)
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More precisely, it reads: [
H + ρI + 2

µ
C⊤(I − P (k,l))C −C⊤(I − P (k,l))

−(I − P (k,l))C µ[I − P (k,l)]

][
dx
dz

]
= −

[
∇xf(x̂(l)) + ρ(x(l) − xk) + 2

µ
C⊤[w(l)

k − u]+
−[w(l)

k − u]+ + µ/2ẑ(l)

]
,

(3.98)

where P (k,l) stands for one element of the generalized Jacobian of [.]+ at w
(l)
k

def= Cx(l) + µzk −
µ/2z(l), which consists of a diagonal matrix with entries

P
(k,l)
jj

def=
{

1 if C⊤
j x(l) + µzk

j + µ/2ẑ
(l)
j ≤ uj ,

0 otherwise.
(3.99)

When P
(k,l)
jj = 1, it implies (see [Marchi., 2021, Section 3.2] for more details)

dzj = −(ẑ(l))j . (3.100)

The linear system can hence be equivalently formulated as:

[
H + ρI C⊤

Jk(x̂(l),ẑ(l))
CJk(x̂(l),ẑ(l)) −µIJk(x̂(l),ẑ(l))

] [
dx

dzJk(x̂(l),ẑ(l))

]
=

−

Hx̂(l) + g + ρ(x̂(l) − xk) + C⊤
Jk(x̂(l),ẑ(l))ẑ

(l)
Jk(x̂(l),ẑ(l))

[Cx(l) + µzk − µẑ(l) − u]Jk(x̂(l),ẑ(l))

 ,

dzJk(x̂(l),ẑ(l))c = −ẑ
(l)
Jk(x̂(l),ẑ(l))c ,

(3.101)

where:
Jk(x, z) def=

{
j ∈ [1, ni]|C⊤

j x + µzk
j + µ/2zj − uj > 0

}
refers to the primal-dual active set at (x, z) for the current kth sub-problem, and Jk(x, z)c stands
for its complementary set (i.e., the set of inactive constraints). Contrary to PMM, one can notice
that this new linear system does not explicitly contain any square matrix multiplications.

3.5.4 Discussions

There are three practical ingredients that are key when implementing AL-based approaches.

1 – Setting ϵk Appropriate choices for ϵk are fundamental to any AL method.

• On the one hand, picking values for ϵk that are too small leads to unnecessary good
approximations of the intermediate optimization problems, even when the iterates are still
far away from solutions to (QP). Practically, this scenario corresponds to requiring the
internal solver to unnecessarily run for too long when solving the intermediary problems.

• On the contrary, picking ϵk too large results in faster computations of the intermediary
subproblems at the cost of requiring much more iterations of the AL method, which might
not even converge.

There are many different techniques for fixing ϵk in practice [Hermans et al., 2021,Rockafellar,
1976a,Birgin and Martínez, 2014]. For ProxQP, we chose to rely on an adaptive strategy similar
in spirit to [Conn et al., 1991].
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2 – Setting µk Using different values for µk has a direct impact on the practical convergence
speed (along with the value ρ for PMM and PDPMM) (see, e.g., [d’Aspremont et al., 2021,
Chapter 5])

• On the one hand, lower values of µk lead to faster convergence (i.e., fewer iterations).

• On the other hand, larger values of µk render the intermediary subproblems structurally
simpler to solve (by increased strong convexity).

Practically speaking, let us mention that in many solvers (including ProxQP), updating µk

corresponds to re-factorizing some internal matrices. Hence, we must generally limit the number
of updates to µk for best practical performances.

3 – Efficient method for computing (xk+1, zk+1) There are several different ways to
come up with ϵk-approximations for (xk+1, zk+1). The choice of the internal routine for this
approximation is thereby crucial both for timing and accuracy requirements.
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3.6 Summary

Table 3.1: Summary of the different optimization methods reviewed for solving QPs, with associated
software libraries and references.

Method Sub-
Family

Solver Backend Warm-
starting

Hot-
starting

Early
termi-
nation

Primal-
dual
gap

Primal GALAHAD Dense ✗ ✗ ✗ ✓

ACTIVE-SET Dual quadprog Dense ✗ 1 ✗ 1 ✗ ✓

Dual DAQP Dense ✓ ✓ ✓ ✓

Dual QPNNLS Dense ✓ ✓ ✓ ✓

Parametric qpOASES Dense ✓ ✓ ✗ ✓

Primal-Dual Gurobi Sparse ✗ ✗ ✓ ✓

Primal-Dual MOSEK Sparse ✗ ✗ ✓ ✓

Primal-Dual CVXOPT Dense ✗ ✗ ✓ ✓

INTERIOR- Primal-Dual ECOS Sparse ✗ ✗ ✓ ✓

POINT Primal-Dual qpSWIFT Sparse ✗ ✗ ✓ ✓

Primal-Dual HPIPM Dense ✗ ✗ ✓ ✓

Primal-Dual Clarabel Sparse ✗ ✗ ✓ ✓

Primal-Dual BPMPD Sparse ✗ ✗ ✓ ✓

Primal-Dual OOQP Sparse ✗ ✗ ✓ ✓

Primal OSQP Sparse ✓ ✓ ✓ ✗

ADMM Self-dual SCS Sparse ✓ ✓ ✓ ✓

embedding

MM LANCELOT Sparse ✓ ✓ ✓ ✗

AUGMENTED PMM QPALM Sparse ✓ ✓ ✓ ✗

LAGRANGIAN PDPMM QPDO Sparse ✗ 1 ✗ 1 ✓ ✗

PDPMM ProxQP Sparse & Dense ✓ ✓ ✓ ✓

1 In their original implementation.
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Chapter4
ProxQP algorithm

Abstract. In this chapter we first present the various components of ProxQP algorithm,
including its convergence properties and implementation details. In particular, since ProxQP is
an AL-based method, we discuss how to handle three key aspects for ensuring the computational
efficiency of this AL-based approach (see notably the discussion in Section 3.5.4). We then present
extensive benchmarks on robotic and standard QP problems.

This chapter is based on these two works:

• ProxQP: Yet another Quadratic Programming Solver for Robotics and beyond, with
Sarah El-Kazdadi, Adrien Taylor, Justin Carpentier, Robotics: Science and System (RSS),
2022;

• ProxQP: an Efficient and Versatile Quadratic Programming Solver for Real-Time Robotics
Applications and Beyond, with Fabian Schramm, Sarah El-Kazdadi, Stéphane Caron, Adrien
Taylor, Justin Carpentier. Submitted to IEEE Transactions on Robotics (TRO).
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4.1 ProxQP

4.1.1 The ProxQP algorithm

ProxQP is detailed in Algorithm 8. It combines a proximal augmented Lagrangian technique
(approximated using an internal primal-dual method) with a globalization strategy for scheduling
the internal step size and accuracy parameters. More precisely, at iteration k, ProxQP computes
candidates xk+1, ẑk+1 satisfying

(xk+1, ẑk+1) ≈ϵk arg min
x∈Rn,z∈Rm

Mk
ρ,µk,α(x, z), (4.1)

for a merit function Mk
ρ,µk,α

that we detail in Section 4.1.4. The following steps build on the
bound-constrained Lagrangian (BCL) strategy (see, e.g., [Conn et al., 1991] and [Nocedal and
Wright, 2006, Algorithm 17.4]) for scheduling both ϵk and µk.

The main idea consists in a fast decrease of ϵk when the primal residual ∥[Cx̂k+1 − u]+∥∞
is small enough. In this case, we accept the approximation with zk+1 = ẑk+1 and leave µk

unchanged with µk+1 = µk. Otherwise, we slightly decrease ϵk, reject the approximation with
zk+1 = zk and decrease µk. Decreasing µk corresponds to a heavier penalization of the feasibility
constraint within the augmented Lagrangian-based function at the next step. Such a strategy
has been proved to perform well in optimization packages such as LANCELOT [Conn et al.,
1992c] as well as in robotics for solving constrained optimal control problems [Plancher et al.,
2017,El Kazdadi et al., 2021,Jallet et al., 2021,Jallet et al., 2022a]. We detail this globalization
technique alongside its resulting global convergence properties for ProxQP in Section 4.1.2. The
method used to minimize Mk

ρ,µk,α
is explained in Section 4.1.4.

Algorithm 8: ProxQP (practical version)
Inputs:

• initial states: x0, z0,

• initial parameters: ϵ0
bcl, ϵ0, ϵabs, ρ, µ0 > 0

• hyper-parameters: µf , βbcl ∈ (0, 1), αbcl ∈ (0, 1/2), with αbcl + βbcl < 1, µmin > 0,
kmax ∈ N ∪ {+∞}.

Initialization:

• preconditioning (see Table 4.3.2)

• optional initialization (see Table 4.3.2) of x0,z0.

while Stopping criterion (3.10) not satisfied do
Compute (xk+1, ẑk+1) satisfying (4.5) (ϵk-approximation to proximal
subproblem (4.4)) using Section 4.1.4;
if ||[Cxk+1 − u]+||∞ < ϵk

bcl using (4.2) OR k ≥ kmax then
µk+1 = µk, ϵk+1 = ϵkµk+1, ϵk+1

bcl = ϵk
bcl(µk+1)βbcl

zk+1 = ẑk+1

else
µk+1 = max(µmin, µf µk)
ϵk+1 = ϵ0µk+1, ϵk+1

bcl = ϵ0
bcl(µk+1)αbcl

zk+1 = zk

end
k ← k + 1

end
Output: A (xk, zk) satisfying the ϵabs-approximation criterion (3.10) for problem (QP).
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4.1.2 Globalization strategy for scheduling ϵk and µk

The globalization strategy in ProxQP consists in updating the dual variables zk—obtained
from minimizing a primal-dual proximal augmented Lagrangian merit function (described in Sec-
tion 4.1.4)—only when the corresponding primal inequality constraint violation (denoted by
pk hereafter) is small enough. More precisely, we use a second internal sequence of tolerances
denoted by ϵk

bcl (which is also tuned within this BCL strategy) and update the dual multipliers
only when pk ≤ ϵk

bcl, where pk denotes the ℓ∞ primal feasibility violation:

pk def=
∥∥∥[Cxk+1 − u]+

∥∥∥
∞

. (4.2)

This BCL strategy allows searching for appropriate values for the hyper-parameters ϵk, ϵk
bcl, µk.

For the constraint penalization parameter µk, it proceeds as follows:

• If pk ≤ ϵk
bcl: the primal inequality constraint violation is satisfactory, keep µk as is.

• Otherwise: the primal inequality constraint violation is too large, decrease µk for sub-
sequent proximal subproblems, which has the effect of leading to heavier penalization of
infeasibility, enforcing their satisfaction.

About the accuracy parameters ϵk and ϵk
bcl, the update rules are more technical. The motivation

underlying those choices is to ensure global convergence: a geometric-decay type update when
the primal inequality constraint violation is good enough, and see [Conn et al., 1991, Lemma
4.1] for when the infeasibility is too large. The detailed strategy is summarized in Algorithm 8.

Convergence properties We analyze a simpler algorithm (see Algorithm 9), whose small
variations are more effective in practice. More precisely, it assumes that at each iteration k of
the algorithm ρk = µk compared to Algorithm 8, where ρ is fixed. Updating ρ is not efficient in
practice since it would require a numerical factorization at each iteration. In this setup and under
the assumption that there exists a primal-dual solution to (QP) (see Theorem 3 and Remark 2),
the iterates of ProxQP are guaranteed to converge to an optimal primal-dual pair.

Algorithm 9: ProxQP (idealized version)
Inputs:

• initial states: x0, z0,

• initial parameters: ϵ0
bcl, ϵ0 > 0, ρ0 = µ0 ∈ (0, 1)

• hyper-parameters: µf < 1, αbcl ∈ (0, 1/2),βbcl ∈ (0, 1) with αbcl + βbcl < 1,
kmax ∈ N ∪ {+∞}.

for k = 0, 1, . . . do
Compute (xk+1, ẑ) satisfying (4.5) at accuracy ϵk with ρk = µk;
if pk ≤ ϵk

bcl OR k ≥ kmax then
µk+1 = µk, ϵk+1 = ϵkµk+1, ϵk+1

bcl = ϵk
bcl(µk+1)βbcl ,

zk+1 = ẑk+1

else
µk+1 = µf µk,
ϵk+1 = ϵ0µk+1, ϵk+1

bcl = ϵ0
bcl(µk+1)αbcl ,

zk+1 = zk.
end

end
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Assumption 1. The problem (QP) is feasible.

Assumption 2. The iterates {(xk, zk)}k generated by ProxQP are bounded.

Theorem 3 (Convergence of ProxQP). Under Assumption 1 (existence of a solution to QP), As-
sumption 2 (bounded iterates), and with all parameters set as required in the inputs of Algorithm 9,
the iterates {(xk, zk)} of ProxQP converge to a solution (x⋆, z⋆) of (QP).

Proof. See Section 4.2.3.

Lemma 1. Under Assumption 1 (existence of solution to (QP)) and Assumption 2 (bounded
iterates), and with all parameters set as required in the inputs of Algorithm 9, ∃K ∈ N, and
µ ∈ R such that ∀k ≥ K µk = µ. Hence, ∀k ≥ 0, pK+k ≤ ϵK

bcl(µK)βbclk.

Proof. See Section 4.2.3.

Remark 2 (On the necessity of Assumption 2). The BCL strategy [Conn et al., 1991, Algorithm
1 and Algorithm 2] was originally developed for solving more general optimization problems. BCL
relies on an augmented Lagrangian strategy. In other words, we build on BCL for constructing an
algorithm that exploits the structural properties of simpler optimization problems (namely QPs).
Furthermore, rather than being based on a purely AL strategy, we rely on a proximal AL strategy.
We managed to get rid of most of the strong assumptions required for ensuring global convergence
of BCL [Conn et al., 1991]. Yet, Assumption (2) still appeared necessary in our analysis. We
introduced the safeguard parameter kmax ∈ N to always enforce the algorithm to ultimately always
accept the candidates (4.1) if Assumption 2 does not hold. This simple trick allows inheriting
some nice properties from PMM that include convergence under mild assumptions [Rockafellar,
1976a, Theorem 5].

Remark 3 (Advantageous numerical properties). As a by-product of the proof of Theorem 3, the
method is guaranteed to use constant penalization parameters after a finite number of iterations.
This is advantageous insofar as (1) we inherit favorable properties of proximal point methods on
saddle point, and (2) it limits the number of numerical matrix factorizations.

4.1.3 Infeasible QPs

Finally, Corollary 4 guarantees that, similarly to MM, PMM and PDPMM methods, ProxQP
converges towards the primal-dual pair to the closest feasible QP solution, which is useful
when (QP) is infeasible.

Corollary 4. Let (QP) be primal infeasible, let its dual (Dual-QP) be feasible, let µ > 0 and
kmax ∈ N. The sequence {(xk, zk)} generated by ProxQP with exact sub-problem minimization
converges towards a solution of (QP-H).

Proof. This is a direct consequence of the fact that, after a finite number of iterations, the
iterations of ProxQP correspond to those of PMM.

4.1.4 Solving proximal sub-problems

We now explicit the primal-dual proximal augmented Lagrangian merit function used for gen-
erating candidates (xk+1, ẑk+1) in (4.1). Then, we explain how to minimize it in quadratic
time.
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The ProxQP primal-dual proximal augmented Lagrangian merit function We use the
same procedure as in [Marchi., 2021] for building our primal-dual proximal augmented Lagrangian
merit function Mk

ρ,µk,α
. By construction, it guarantees that minimizing Mk

ρ,µk,α
is equivalent to

solving (3.87). Yet, contrary to Mρ,µk , we make a different choice for the parameter α ∈ (0, 1)1,
tuned for better practical performance,

Mk
ρ,µk,α(x, z) def= f(x) + 1

2αµk ∥[Cx− u + µk(zk + (α− 1)z)]+∥2
2 + ρ

2∥x− xk∥2
2 + (1−α)µk

2 ∥z∥2
2. (4.3)

This leads to the following inexact proximal scheme

(xk+1, zk+1) ≈ϵk arg min
x∈Rn,z∈Rm

Mk
ρ,µk,α(x, z), (4.4)

where ≈ϵk corresponds to∥∥∥∥[ ∇xf(xk+1) + C⊤zk+1 + ρ(xk+1 − xk)
[Cxk+1 − u + µk(zk + (α− 1)zk+1)]+ − αµkzk+1

]∥∥∥∥
∞
≤ ϵk. (4.5)

Since Mk
ρ,µk,α

is strongly convex and piece-wise quadratic, it can be minimized exactly in finite
time using a semi-smooth Newton method with exact linesearch [Sun, 1997, Theorem 3].

Semi-smooth Newton method For convenience, we omit the index k for the iterates of
the Newton method arising at iteration k of ProxQP. A semi-smooth Newton method applied
to Mk

ρ,µk,α
, and initialized at (x̂(0), ẑ(0)) = (xk, zk) involves finding at the lth inner iteration

dw
def= (dx, dz) satisfying:

∇2Mk
ρ,µk,α(x̂(l), ẑ(l))dw +∇Mk

ρ,µk,α(x̂(l), ẑ(l)) = 0, (4.6)

where ∇Mk
ρ,µk,α

(x̂(l), ẑ(l)) and ∇2Mk
ρ,µk,α

(x̂(l), ẑ(l)) stand respectively for one element of the
generalized Jacobian and the generalized Hessian of Mρ,µk,α [Facchinei and Pang, 2003, Section
7.1].

Once a semi-smooth Newton step (dx, dz) has been obtained, the exact line-search procedure
consists in finding the unique t∗ such that:

t∗ = arg min
t≥0

Mk
ρ,µk,α(x̂(l) + tdx, ẑ(l) + tdz).

Similarly to [Hermans et al., 2021, Marchi., 2021, Bambade et al., 2022] the function t 7→
Mk

ρ,µk,α
(x̂(l) + tdx, ẑ(l) + tdz) is continuous and piece-wise quadratic with a finite number of

breaking points2. Hence, one can exactly compute t∗, an optimal solution to this one-dimensional
problem. Finally, the semi-smooth Newton method initialized at (x̂(0), ẑ(0)) = (xk, zk) generates
a sequence (x̂(l), ẑ(l)) via the update rule:

x̂(l+1) = x̂(l) + t∗dx,

ẑ(l+1) = ẑ(l) + t∗dz.

Solving linear systems In this section, we specify the linear systems induced by the min-
imization of Mk

ρ,µk,α
. We show that they are naturally better conditioned than those arising

from Φk
ρ,µk since they naturally avoid quadratic matrix multiplications (such as C⊤C).

1Notice that with α = 1
2 we recover Mρ,µk as in (3.93).

2This feature is very specific to linear and quadratic types of problems and does help reducing the overall
computational burden.
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Equation (4.6) reads:[
H + ρI + 1

αµk C⊤(I − P (k,l))C α−1
α

C⊤(I − P (k,l))
α−1

α
(I − P (k,l))C µk(α − 1)[− 1

α
I − α−1

α
P (k,l)]

][
dx
dz

]
= −

[
∇xf(x̂(l)) + ρ(x(l) − xk) + 1

αµk C⊤[w(l)
k − u]+

α−1
α

[w(l)
k − u]+ + µk(1 − α)ẑ(l)

]
,

(4.7)

where P (k,l) stands for one element of the generalized Jacobian of [.]+ at w
(l)
k

def= Cx(l) + µkzk +
µk(α− 1)z(l). P (k,l) consists of a diagonal matrix with entries

P
(k,l)
jj

def=
{

1 if C⊤
j x̂(l) + µkzk

j + µk(α− 1)ẑ(l)
j ≤ uj ,

0 otherwise.

When P
(k,l)
jj = 1, it implies (see [Marchi., 2021, Section 3.2] for more details)

dzj = −(ẑ(l))j .

The linear system (4.7) can hence be equivalently formulated as:

[
H + ρI C⊤

Jk(x̂(l),ẑ(l))
CJk(x̂(l),ẑ(l)) −µkIJk(x̂(l),ẑ(l))

] [
dx

dzJk(x̂(l),ẑ(l))

]
=

−

Hx̂(l) + g + ρ(x̂(l) − xk) + C⊤
Jk(x̂(l),ẑ(l))ẑ

(l)
Jk(x̂(l),ẑ(l))

[Cx(l) + µkzk − µkẑ(l) − u]Jk(x̂(l),ẑ(l))

 ,

dzJk(x̂(l),ẑ(l))c = −ẑ
(l)
Jk(x̂(l),ẑ(l))c ,

(4.8)

where:
Jk(x, z) def=

{
j ∈ [1, ni]|C⊤

j x + µkzk
j + µk(α− 1)zj − uj > 0

}
refers to the primal-dual active set at (x, z) for the current kth sub-problem, and Jk(x, z)c

stands for its complementary set (i.e., the set of inactive constraints). The linear system (4.8)
is symmetric and non-singular. Thus it can be efficiently solved using LDLT factorization.
Furthermore, one can notice it does not explicitly contain any square matrix multiplications. We
will see it is not the case when working with Φk

ρ,µk .
At the lth iteration, a semi-smooth Newton method applied to Φk

ρ,µk , and initialized at x̂(0) =
xk involves finding dx satisfying ∇2Φk

ρ,µk(x̂(l))dx+Φk
ρ,µk(x̂(l)) = 0. One ends-up solving [Hermans

et al., 2021, Equation 3.4]:[
H + ρI C⊤

Ik(x̂(l))
CIk(x̂(l)) −µkI

] [
dx
dz

]
=
[
−∇xΦk

ρ,µk(x̂(l))
0

]
,

where Ik(x̂(l)) def= {i ∈ [1, ni] |Cix̂
(l) − ui + zk

i µk > 0} refers to the active set of the current
proximal sub-problem, and CIk(x̂(l)) corresponds to a reduced version of the matrix C containing
the active rows indexed by Ik(x̂(l)). The gradient on the right-hand side of this equation equals:

∇xΦk
ρ,µk(x̂l) = Hx̂(l) + g + ρ(x̂(l) − xk) + C⊤

[
zk + 1

µk (Cx̂(l) − u)
]

+
.

For either low values of µk or ill-conditioning of CIk(x̂(l)), the evaluation of the gradient is
numerically challenged due to the value of 1

µk C⊤
Ik(x̂(l))CIk(x̂(l)) (see, e.g., [Nocedal and Wright, 2006,

Chapter 17.4] which gives examples illustrating ill-conditioning resulting from such structures).
In the next section, we establish the convergence properties stated above.
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4.2 Convergence properties

4.2.1 Organisation of the section

Section 4.2.3 establishes the global convergence of ProxQP (Theorem 3). It illustrates that
the BCL algorithm [Conn et al., 1991] finds appropriate proximal steps to match a desired
convergence speed for primal feasibility pk. More precisely, BCL decreases µk until the inequality
pk ≤ ϵk

bcl holds for all iteration starting from k. At this stage of the algorithm, ProxQP amounts
to a primal-dual proximal point algorithm, and we rely on [Luque, 1984, Proposition 1.2] to
ensure the global convergence of ProxQP. We study the simplified Algorithm 9, which assumes
that at each iteration k of the algorithm ρk = µk compared to Algorithm 8, where ρ is fixed.
Updating ρ is not desirable in practice since it would require a numerical factorization at each
iteration.

Section Content

Section 4.2.2 Notations and technical properties.

Section 4.2.3
Missing technical elements. Proof of Lemma 2.

Proof of Lemma 4.

Section 4.2.4 Proof of Theorem 3.

Section 4.2.5 Proof of Lemma 1.

Table 4.1: Organization of the section.

4.2.2 Further notations and technical properties

This section provides a few additional technical ingredients that are necessary for establishing
a ProxQP convergence proof. We introduce a maximal monotone operator T −1

L (v, t) (see for
more details [Rockafellar, 1976b]), that encodes the set of solutions of the shifted problem (QP)
by (t, v):

TL(x, z) def= {(v, t)|(v,−t) ∈ ∂L(x, z)},

T −1
L (v, t) def= arg min

x∈Rn
max
z∈Rm

{L(x, z)− x⊤v + z⊤t},

where ∂L refers to

∂L(x, z) def=
(
∇f(x) + C⊤z
Cx− ∂I⋆

u(z)

)
, (4.9)

with Iu the indicator function of the constraint set Cx ≤ u. The Lagrangian function and TL(x, z)
encodes the saddle sub-differential for (QP) [Ryu and Boyd, 2016, Section 4.3]. TL and T −1

L are
generally "point to set" operators. From TL and for µ > 0 we also introduce the resolvent of TL
and T −1

L

• the resolvent of TL [Rockafellar, 1976b]:

Pµ
def= (I + 1

µ
TL)−1, (4.10)
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• the resolvent of T −1
L [Rockafellar, 1976b]:

Qµ
def= (I + µT −1

L )−1 = I − Pµ. (4.11)

More precisely, when T −1
L (0, 0) is non-empty, it encodes the set of solutions to (QP) . When (QP)

is feasible, the KKT conditions for (QP) form a polyhedral variational inequality [Dontchev
et al., 2009a, Section 3D]. Hence, ∃a ≥ 0, τ > 0, such that ∀(u, v) ∈ Rn+m:

∥(u,v)∥ ≤ τ

=⇒
distT −1

L (0,0)(x, z) ≤ a∥(u, v)∥, ∀(x, z) ∈ T −1
L (u, v)

(4.12)

a and τ are constants describing the geometry of the QP. Rockafellar [Rockafellar, 1970, Thm. 2]
has established that it holds as soon as TL(0, 0)−1 ̸= ∅. That is, ∀µ > 0, ∀(x, z) ∈ Rn × Rm:

µ∥Qµ(x, z)∥ ≤ τ

=⇒
distTL(0,0)−1(Pµ(x, z)) ≤ aµ√

1+a2µ2
distTL(0,0)−1(x, z).

(4.13)

4.2.3 Convergence of ProxQP

The main convergence result for ProxQP is provided by Theorem 3. To prove this theorem (in
Section 4.2.4), we proceed with the following strategy. This strategy relies on a slightly different
formulation of ProxQP provided by Algorithm 9 (it is necessary for the proof to consider the
conceptual infinite sequence of iterates generated by the algorithm).

• First, Lemma 2 shows that the “if condition” of ProxQP (see Algorithm 9) is satisfied at
infinitely many iterations.

• Second, Lemma 4 shows that the “else condition” of ProxQP (see Algorithm 9) is entered
only for a finite number of iterations.

• It follows from the second point that ProxQP corresponds to a primal-dual proximal point
method, and hence inherits all its nice convergence properties. This is formally stated in
Section 4.2.4.

• Finally, one can conveniently deduce from this construction that ProxQP asymptotically
corresponds to a fixed-step proximal method of multiplier (PMM, i.e., there exists K > 0
such that for all k ≥ K, µk is constant). This is formally stated in Section 4.2.5.

We enter the “if” of Algorithm 9 an infinite number of times

Lemma 2. Under Assumption 1 and Assumption 2, ∀k ∈ N,∃K ≥ 0 such that the condition
∥[Cxk+K+1 − u]+∥∞ ≤ ϵk+K

bcl of Algorithm 9 is satisfied.

Proof. The following proof proceeds by contradiction. That is, we show that there cannot exist a
k ≥ 0 such that ∀K > 0 it holds that pk+K def= ∥[Cxk+K+1 − u]+∥∞ > ϵk+K

bcl (as defined in (4.2)).
For convenience, and without loss of generality, we assume k = 0.

By contradiction hypothesis, we thus have that pK > ϵK
bcl holds ∀K ≥ 0. Therefore,

µK = µ0(µf )K and ϵK
bcl = ϵ0

bcl(µ0)αbcl(µf )αbclK and hence µK → 0 and ϵK
bcl → 0 as K →∞, since

µf ∈ (0, 1) and αbcl ∈ (0, 1/2). For establishing the desired statement, we show that under the
contradiction hypothesis, one has

ϵK
bcl < ∥[CxK+1 − u]+∥∞ ≤ A

√
µK , (4.14)
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for all K ≥ 0, thereby reaching a contradiction. Indeed, with αbcl ∈ (0, 1/2), the term
√

µK goes
faster to zero (as a function of K) than ϵK

bcl. More precisely, the hyperparameter choices within
ProxQP ensure that ∃K0 ≥ 0 such that ∀K ≥ K0, ϵK

bcl > A
√

µK .
For proving our claim, we, therefore, focus on proving (4.14) in the following lines.
First, at iteration K + 1, the pair (xK+1, ẑK+1) is an approximate solution to (4.4). In other

words, by defining intermediary variables, we have:

uK def= ∇f(xK+1) + C⊤ẑK+1 + µK(xK+1 − xK),

vK def= [CxK+1 − u + µK(z0 + (α− 1)ẑK+1]+ − ẑK+1αµK ,

with ∥(uK , vK)∥∞ ≤ ϵK . Following [Marchi., 2021, Section 3.1], one can equivalently look at
(xk+1, ẑk+1) as the unique minimum of the strongly convex function M̂K

ρ,µK ,α
:

M̂K
ρ,µK ,α(x, z) def= f(x) + µK

2 ∥x− (xK + 1
µK uK)∥22

+ 1
2αµK ∥[Cx− u + µK(zK + (α− 1)z)]+∥22

+ (1−α)µK

2 ∥z + 1
αµk vK∥22.

Therefore, for any x ∈ Rn satisfying Cx− u ≤ 0 (such a feasible x exists by Assumption Assump-
tion 1), we get:

M̂K
ρ,µK ,α(xK+1, ẑK+1) ≤ M̂K

ρ,µK ,α(x, 0).

As {xK} is bounded by assumption 2, then ∃M > 0 independent of K such that

M̂K
ρ,µK ,α(xK+1, ẑK+1) ≤ f(x) + MµK , (4.15)

where we used the facts that for a feasible point x, [Cx−u + z0µK ]+ ≤ [z0]+µK (as Cx−u ≤ 0),
and that ∥(uK , vK)∥∞ ≤ ϵK implies that ∥uK∥∞/µK ≤ ϵ0 and that ∥vK∥∞/µK .

It follows from the definition of M̂K
ρ,µK ,α

(and nonnegativity of the ∥.∥2 terms) that:

• we can bound

M̂K
ρ,µK ,α(xK+1, ẑK+1) ≥ f(xK+1) + 1

2αµk ∥[CxK+1 − u + µk(z0 + (α− 1)ẑk+1)]+∥22

which, using (4.15), can be used to reach

∥[CxK+1 − u + µK(z0 + (α− 1)ẑK+1)]+∥2 ≤
√

2µKα(f(x)− f(xK+1) + MµK). (4.16)

From (4.16), since {xK}K is bounded and f is a quadratic, we deduce that there exists
some M1 > 0 independent of K such that

∥[CxK+1 − u + µK(z0 + (α− 1)ẑK+1)]+∥2 ≤
√

µKM1. (4.17)

• We can bound

M̂K
ρ,µK ,α(xK+1, ẑK+1) ≥ f(xK+1) + (1−α)µK

2 ∥z + 1
αµk vK∥22.

which, using (4.15), can be used to reach√
µK∥ẑK+1∥2 ≤

√
2√

1−α
(
√

f(x)− f(xK+1) + MµK +
√

1−α√
α
∥vK∥2).

It shows that
√

µK∥ẑK+1∥2 is bounded since {xK} is bounded and f is a quadratic function.
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We are now in a position to guarantee that ∀K > 0:

∥[CxK+1 − u]+∥∞ ≤ A
√

µK . (4.18)

for some A > 0. Indeed, it holds component-wise

[CxK+1 − u]+ − µK |(z0 + (α− 1)ẑK+1)| ≤ [CxK+1 − u + µK(z0 + (α− 1)ẑK+1)]+, (4.19)

where |.| is the absolute value taken component-wise. We can deduce from (4.19) that

∥[CxK+1 − u]+∥2 ≤ ∥[CxK+1 − u + µK(z0 + (α− 1)ẑK+1)]+∥2

+
√

µK∥
√

µK(z0 + (α− 1)ẑK+1)∥2
(4.20)

Hence, from (4.20), using (4.17) and the fact that {
√

µK(z0 + (α − 1)ẑK+1)}K is bounded by
some M2 > 0 (since {

√
µK ẑK+1} is bounded and {

√
µK}K converges to zero) we get

∥[CxK+1 − u]+∥2 ≤ (M1 + M2︸ ︷︷ ︸
def= A>0

)
√

µK .

To reach the desired claim, we use (4.18) together with the contradiction hypothesis that
ϵK
bcl < ∥[CxK+1 − u]+∥∞ which allows reaching the contradiction that ∀K > 0:

ϵK
bcl ≤ A

√
µK .

We enter the “else” of Algorithm 9 a finite number of times

As previewed in Section 4.2.3, this section establishes that the “else” condition of Algorithm 9 is
only entered a finite number of times. The proof can be summarized as follows.

• If the “else” condition is never satisfied, then the result directly holds.

• Otherwise, since Lemma Lemma 2 ensures the “if” condition is entered an infinite number
of times, we consider the following setting. Without loss of generality, we can assume that
the “else” condition is entered at iteration k for the Kth time and that it is followed by a
“if” condition. It implies that

µk = µ0(µf )K , ϵk
bcl = ϵ0

bcl(µk)αbcl .

We denote by N ≥ 2 the number of consecutive iterations from k for which we enter the
“if” condition, meaning that

µk+N = µ0(µf )K , ϵk+N−1
bcl = ϵ0

bcl(µk)αbcl+(N−1)βbcl .

In this situation, one can establish that for QPs, there exists constants M > 0 and b ≥ 1
(describing the geometry of the problem at hand) such that the primal infeasibility can be
upper-bounded for N ≥ 2 by

∥[Cxk+N − u]+∥∞ ≤M
(
bµk

)N−1
, (4.21)

For entering the “else” condition in this scenario at the (k + N)th step, it is therefore
necessary to be in the situation where

ϵk+N−1
bcl < ∥[Cxk+N − u]+∥∞ ≤M

(
bµk

)N−1
,
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Substituting the expressions for ϵk+N−1
bcl and µk, we arrive to the following necessary

condition for entering the “else” at iteration (k + N):

ϵ0
bcl(µ0(µf )K)αbcl+(N−1)βbcl ≤M(bµ0(µf )K)N−1.

On the contrary, it is therefore sufficient to satisfy

M(bµ0(µf )K)N−1 ≤ ϵ0
bcl(µ0(µf )K)αbcl+(N−1)βbcl

for not entering the “else”. Given that αbcl ∈ (0, 1/2), βbcl ∈ (0, 1) with βbcl + αbcl < 1,
and µf ∈ (0, 1) it can be established that this condition is met for all N ≥ 2 as soon as

max(⌈
log( b(µ0)1−αbcl−βbcl M

ϵ0
bcl

)

− log(µf )(1−αbcl−βbcl) ⌉, ⌈
log(b(µ0)1−βbcl )

− log(µf )(1−βbcl)⌉, Kτ ) ≤ K, (4.22)

for some Kτ ∈ N (for the pair (a, τ) from (4.13), which describes the geometry of the QP at
hand). It shows that the “else” condition is entered only a finite number of times, thereby
arriving to the desired conclusion.

Our main target is thus to establish that (4.22) holds, as the desired conclusion nicely
follows from this fact. For reaching this target, Lemma 3 provides an intermediary result which
ensures that for K sufficiently large (i.e., larger than Kτ mentioned in (4.22)), the technical
property (4.13) holds for all the iterates of ProxQP.

Lemma 3. Under Assumption 1, Assumption 2, and if µk → 0 (i.e., we enter an infinite
number of times the “else” condition), for any τ > 0 ∃Kτ ∈ N such that for all ∀k ≥ Kτ ,
µk∥Qµk(xk, zk)∥2 ≤ τ .

Proof. In this setting ϵk = ϵ0µk. Then, by definition of Qµk (4.11)

∥Qµk (xk, zk)∥2 = ∥(xk, zk)− Pµk (xk, zk)∥2 ≤
∥∥∥∥(xk − xk+1

zk − zk+1

)∥∥∥∥
2

+ ∥(xk+1, zk+1)− Pµk (xk, zk)∥2. (4.23)

Pµk(xk, zk) corresponds to the solution pair to (3.87). Since Mµk,µk,α is strongly convex with
parameter at least (1− α)µk, it follows that

(1− α)µk∥(xk+1, zk+1)− Pµk(xk, zk)∥2
≤ ∥∇Mµk,µk,α(xk+1, zk+1)−∇Mµk,µk,α(Pµk(xk, zk))︸ ︷︷ ︸

=0

∥2

≤ max(1, 1−α
α )ϵk,

where the last inequality comes from the fact that

∇zMµk,µk,α(xk+1, zk+1) = 1−α
α ([Cxk+1 − u + µk(zk + (α− 1)zk+1)]+ − αµkzk+1),

and (xk+1, zk+1) satisfies (4.5) at accuracy ϵk. Hence, it holds

∥(xk+1, zk+1)− Pµk(xk, zk)∥2 ≤ max( 1
1−α , 1

α)︸ ︷︷ ︸
def= w

ϵk/µk.
(4.24)

As ϵk = ϵ0µk, combining (4.23) with (4.24) allows obtaining the upper bound

µk∥Qµk(xk, zk)∥2 ≤ µk

∥∥∥∥∥
(

xk − xk+1

zk − zk+1

)∥∥∥∥∥
2

+ wϵk

≤ µk

∥∥∥∥∥
(

xk − xk+1

zk − zk+1

)∥∥∥∥∥
2

+ µkwϵ0.

(4.25)
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Since {(xk, zk)} is bounded (see Assumption 1), and since µk → 0 (exponentially in the number
of times we enter the “else” condition), we conclude from (4.25) that ∀τ > 0, there ∃Kτ ∈ N,
such that ∀k ≥ Kτ , µk∥Qµk(xk, zk)∥2 ≤ τ .

Finally, Lemma Lemma 4 establishes our main result. More precisely, we make use of Lemma 3
to establish first the inequality (4.21) and then (4.22).
Lemma 4. Under Assumption 1 and Assumption 2, ∃Nmax ∈ N such that for all k ≥ Nmax the
condition pk+1 ≤ ϵk

bcl of Algorithm 9 is satisfied (i.e., we enter the “if condition”).
Proof. We split the proof in several cases.

• If we enter the “else condition” a finite number of times, the result holds.

• If we enter the “else condition” an infinite number of times, Lemma Lemma 2 ensures that
each time we enter the “else”, there is a subsequent iteration for which we enter the “if”.
Therefore, we can without loss of generality assume that we enter the “else” at iteration k
for the the Kth time, and that we enter the “if” at iteration k + 1.
In this setup (we enter an infinite number of times the “else”, µk → 0 and Lemma 3
applies. Therefore, we can also pick without loss of generality k ≥ Kτ where Kτ ∈ N is
such that (4.13) holds (for a specific (a, τ) describing the geometry of the QP at hand).
In what follows, we consider this situation and show that it cannot happen (i.e., “else” is
entered a finite number of times).

Since (QP) is feasible by assumption, it follows that T −1
L (0, 0) ̸= ∅. For l ∈ [0, N ] we denote

by (x̄k+l, z̄k+l) the projection of (xk+l, zk+l) onto the set of solutions T −1
L (0, 0). As x̄k+N is

feasible, it follows that

∥[Cxk+N − u]+∥2 = ∥[Cxk+N − u]+ − [Cx̄k+N − u]+∥2. (4.26)

As [.]+ is a non-expansive operator (as any projection operator), it follows that (4.26) can be
upper bounded by

∥[Cxk+N − u]+∥2 ≤ ∥C(xk+N − x̄k+N )∥2
≤ ∥C∥2∥xk+N − x̄k+N∥2

≤ ∥C∥2

∥∥∥∥∥
(

xk+N − x̄k+N

zk+N − z̄k+N

)∥∥∥∥∥
2︸ ︷︷ ︸

def= distTL(0,0)−1 (xk+N ,zk+N )

.
(4.27)

The following lines therefore focus on upper bounding the last term in different ways. First,∥∥∥∥∥
(

xk+N − x̄k+N

zk+N − z̄k+N

)∥∥∥∥∥
2

≤
∥∥∥∥∥
(

xk+N

zk+N

)
− Pµk(xk+N−1, zk+N−1)

∥∥∥∥∥
2

,

(4.28)

which follows from the definition of (x̄k+N , z̄k+N ) as the projection of (xk+N , zk+N ) and Pµk(xk+N−1, zk+N−1)
corresponds to the projection of Pµk(xk+N−1, zk+N−1) onto T −1

L (0, 0). which can be further
upper bounded via a triangle inequality:

∥
(

xk+N

zk+N

)
− Pµk(xk+N−1, zk+N−1)∥2

≤ ∥
(

xk+N

zk+N

)
− Pµk(xk+N−1, zk+N−1)∥2

+ ∥Pµk(xk+N−1, zk+N−1)− Pµk(xk+N−1, zk+N−1)∥2.

(4.29)
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Hence we also have: ∥∥∥∥∥
(

xk+N − x̄k+N

zk+N − z̄k+N

)∥∥∥∥∥
2

≤ ∥
(

xk+N

zk+N

)
− Pµk(xk+N−1, zk+N−1)∥2

+ ∥Pµk(xk+N−1, zk+N−1)− Pµk(xk+N−1, zk+N−1)∥2.

(4.30)

Now, using k ≥ Kτ from Lemma 3 (for a specific (a, τ) such that (4.13) holds for the QP at
hand), then using the property (4.13) provides

∥Pµk(xk+N−1, zk+N−1)− Pµk(xk+N , zk+N )∥2

≤ aµk√
1 + a2(µk)2

distTL(0,0)−1(xk+N−1, zk+N−1)

≤ aµk

∥∥∥∥∥
(

xk+N−1 − x̄k+N−1

zk+N−1 − z̄k+N−1

)∥∥∥∥∥
2

.

(4.31)

Hence incorporating (4.31) in (4.30) leads to∥∥∥∥∥
(

xk+N − x̄k+N

zk+N − z̄k+N

)∥∥∥∥∥
2
≤ wϵk+N−1

µk + aµk

∥∥∥∥∥
(

xk+N−1 − x̄k+N−1

zk+N−1 − z̄k+N−1

)∥∥∥∥∥
2

(4.32)

where we also used the fact that (xk+N , zk+N ) satisfies (4.5) at accuracy ϵk+N−1 similarly
to (4.24). Iteratively expanding the upper bound (4.32) N − 1 times leads to∥∥∥∥∥

(
xk+N − x̄k+N

zk+N − z̄k+N

)∥∥∥∥∥
2
≤ w

N−1∑
l=0

ϵk+N−1−l

µk (aµk)l + (aµk)N

∥∥∥∥∥
(

xk − x̄k

zk − z̄k

)∥∥∥∥∥
2

. (4.33)

Because ϵk+N−1−l = ϵ0(µk)N−l, we deduce from (4.33) that∥∥∥∥∥
(

xk+N − x̄k+N

zk+N − z̄k+N

)∥∥∥∥∥
2

≤ w(µk)N−1
N−1∑
l=0

(a)l + (aµk)N

∥∥∥∥∥
(

xk − x̄k

zk − z̄k

)∥∥∥∥∥
2

≤ w(µk)N−1
N−1∑
l=0

(a)l + B(aµk)N ,

(4.34)

for some B > 0, since {(xk, zk)}k is bounded (by Assumption 2). Finally, incorporating (4.34)
into (4.27) provides the bound

∥[Cxk+N − u]+∥∞ ≤ e∥C∥2

(
w(µk)N−1

N−1∑
l=0

(a)l + B(aµk)N

)
, (4.35)

for some constant e > 0 (from the norm equivalences between ∥.∥∞ and ∥.∥2 in Rm). Depending
on the value of a, we distinguish three different cases to show the inequality (4.21):

• if a ∈ (0, 1), then, since {µk}k is bounded by 1 (since µ0 ∈ (0, 1) and µf ∈ (0, 1)), we can
upper bound the geometric sum in (4.35) with

∥[Cxk+N − u]+∥∞ ≤ e∥C∥2
(
w 1

1−a + B
)

︸ ︷︷ ︸
=M

(µk)N−1,

and hence (4.21) holds with b = 1.
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• if a > 1, then we can upper bound the geometric sum with (using again that {µk}k is
bounded by 1)

∥[Cxk+N − u]+∥∞ ≤ e∥C∥2
(
w 1

a−1 + aB
)

︸ ︷︷ ︸
=M

(aµk)N−1,

and hence (4.21) holds with b = a.

• if a = 1, then we can upper bound the geometric sum with (using again that {µk}k is
bounded by 1)

∥[Cxk+N − u]+∥∞ ≤ e∥C∥2 (wN + B) (µk)N−1

≤ 4e∥C∥2 max(w, B)︸ ︷︷ ︸
=M

(2µk)N−1,

where we used that ∀N ∈ N, N ≤ 2N . Hence (4.21) holds with b = 2.

Thus in any case, there exists some M > 0 and b ≥ 1, such that (4.21) holds. To conclude, in
order to enter at least N ≥ 2 consecutive times in the “if” condition it is sufficient to satisfy

M(bµ0(µf )K)N−1 ≤ ϵ0
bcl(µ0(µf )K)αbcl+(N−1)βbcl , (4.36)

which is equivalent to

log( b(µ0)1−αbcl−βbcl M
ϵ0

bcl
) + (N − 2) log(b(µ0)1−βbcl)

≤ − log(µf )(1− αbcl − βbcl)K
− log(µf )(1− βbcl)(N − 2)K.

Since µf ∈ (0, 1), αbcl ∈ (0, 1/2), βbcl ∈ (0, 1) with αbcl + βbcl < 1, then (4.36) holds for any
N ≥ 2 as soon as

max(⌈
log( b(µ0)1−αbcl−βbcl M

ϵ0
bcl

)

− log(µf )(1−αbcl−βbcl) ⌉, ⌈
log(b(µ0)1−βbcl )

− log(µf )(1−βbcl)⌉, Kτ ) ≤ K,

which establishes (4.22). In other words, we enter the “else condition” only a finite number of
times (which is bounded above by the value of the previous max).

4.2.4 Proof of Theorem 3

Theorem 3 (Convergence of ProxQP). Under Assumption 1 (existence of a solution to QP), As-
sumption 2 (bounded iterates), and with all parameters set as required in the inputs of Algorithm 9,
the iterates {(xk, zk)} of ProxQP converge to a solution (x⋆, z⋆) of (QP).

Proof. The proof consists in showing that ProxQP asymptotically corresponds to a proximal
point algorithm (PPA). Then, we leverage the classical global convergence guarantees for PPA,
which is automatically inherited by ProxQP. To show this link between ProxQP and PPA,
(i) we first recall PPA global convergence properties, and then (ii) show that in a finite number
of iterations ProxQP is a fixed-step PPA.

When (QP) is feasible, the KKT conditions 0 ∈ TL(x, z) forms a polyhedral variational
inequality [Dontchev et al., 2009a, Section 3D]. In such settings, if we consider a sequence {µk}k,
bounded below by some µ∞ > 0, and {ηk}k some summable sequence, then the inexact proximal
point iteration

(xk+1, zk+1) ≈ηk Pµk(xk, zk), (4.37)
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with ≈ηk corresponding to

∥(xk+1, zk+1)− Pµk(xk, zk)∥2 ≤ ηk, (4.38)

is guaranteed to converge globally to some (x⋆, z⋆) ∈ T −1
L (0, 0) [Luque, 1984, Proposition 1.2].

Depending on the value of kmax, we distinguish two different cases to show that ProxQP
is asymptotically equivalent to PPA. As we will see, it amounts to show that ProxQP always
enters the “if” condition in a finite number of iterations.

• If kmax < +∞, then after kmax number of iterations, ProxQP iterates always enter the
“if” condition.

• Otherwise, under Assumption (2) and Assumption (1), Lemma (4) ensures that there exists
some Nmax ∈ N, after which ProxQP enter only the “if” condition.

Hence, for k ≥ N
def= min(kmax, Nmax), ProxQP always accepts the iterates (xk+1, ẑk+1)

from (4.4). Furthermore, for l ≥ 0

µN+l = µN ,

ϵN+l = ϵk(µN )l.

Hence the iterates of Algorithm 9 amount to a fixed step PPA, namely for k ≥ N

(xk+1, ẑk+1) ≈eϵk PµN (xk, zk),

for some constant e > 0 which can be provided following the same strategy as detailed in (4.24).
As {ϵk}k is summable for k ≥ N , it concludes our claim.

4.2.5 Proof of Lemma Lemma 1

Lemma 1. Under Assumption 1 (existence of solution to (QP)) and Assumption 2 (bounded
iterates), and with all parameters set as required in the inputs of Algorithm 9, ∃K ∈ N, and
µ ∈ R such that ∀k ≥ K µk = µ. Hence, ∀k ≥ 0, pK+k ≤ ϵK

bcl(µK)βbclk.

Proof. By Lemma 4, ∃µ ∈ R, ∃K ∈ N such that for all k ≥ K, it holds that pk < ϵk
bcl and µk = µ

is constant.

4.3 Software Implementation

In this section, we list a range of common QP solvers, along with their underlying optimization
strategy, and then detail the software implementation of ProxQP within the ProxSuite library.

4.3.1 Common QP solvers

We provide below a summary of different start-of-the-art solvers implementing iterative opti-
mization methods previously described in Chapter 3, and summarized in Table 4.2, with a short
description of their practical features for embedded optimization.

Active-set solvers Popular active set-based convex QP solvers include the open-source
qpOASES [Ferreau et al., 2014], quadprog [Goldfarb and Idnani, 1983], DAQP [Arnström
et al., 2022], and the QPA module in the open source software GALAHAD [Gould et al., 2017].
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Interior-point solvers Standard solvers using an interior-point strategy are commercial solvers
Gurobi [Optimization, 2020] and Mosek [Mosek, 2022], closed-source BPMPD [Mészáros,
1999], and open-source solvers OOQP [Gertz and Wright, 2003], HPIPM [Frison and Diehl,
2020], ECOS [Domahidi et al., 2013], CVXOPT [Andersen et al., 2013] and qpSWIFT [Pandala
et al., 2019].

Augmented Lagrangian-based solvers Common solvers based on augmented Lagrangians
for solving QPs include OSQP [Stellato et al., 2020] and SCS [O’Donoghue et al., 2016] (via an
alternating direction method of multipliers) and QPALM [Hermans et al., 2021].

Table 4.2: Comparison of different optimization methods and software libraries for solving QPs.

Method Solver Backend Warm-
starting

Hot-
starting

Early
termi-
nation

Primal-
dual
gap

Infeasibility
solving

qpOASES Dense ✓ ✓ ✗ ✓ ✗

ACTIVE-SET quadprog Dense ✗ 1 ✗ 1 ✗ ✓ ✗

DAQP Dense ✗ 1 ✗ 1 ✗ ✓ ✗

Gurobi Sparse ✗ ✗ ✓ ✓ ✗

INTERIOR- MOSEK Sparse ✗ ✗ ✓ ✓ ✗

POINT CVXOPT Dense ✗ ✗ ✓ ✓ ✗

ECOS Sparse ✗ ✗ ✓ ✓ ✗

qpSWIFT Sparse ✗ ✗ ✓ ✓ ✗

OSQP Sparse ✓ ✓ ✓ ✗ ✗ 2

AUGMENTED SCS Sparse ✓ ✓ ✓ ✓ ✗ 2

LAGRANGIAN ProxQP Sparse & Dense ✓ ✓ ✓ ✓ ✓

1 In their original implementation. 2 Not established nor implemented.

4.3.2 The ProxSuite library

ProxQP is implemented in C++ within the ProxSuite library and builds extensively on
the Eigen library [Guennebaud et al., 2010] for efficient linear algebra. The current imple-
mentation is tailored to both dense and sparse matrix operations and leverages recent CPU
architectures equipped with advanced vectorization instructions. ProxSuite is publicly available
at https://github.com/Simple-Robotics/proxsuite under a permissive open source BSD-2-Clause
license. It comes with out-of-the-box interfaces for the C++, Julia, and Python languages
inspired from OSQP [Stellato et al., 2020]. The documentation of ProxSuite’s API is available
online at https://simple-robotics.github.io/proxsuite/. In the following, we describe
some key features of ProxSuite, list our default parameters in Table 4.3 as well as a code
snippet in Listing 4.1.

Cholesky factorization In ProxSuite, we have developed dedicated dense and sparse LDLT
Cholesky factorizations to explicitly account for the specific calculations. In particular, this
Cholesky factorization implements advanced rank update routines to efficiently account for the
change of active sets when solving (4.8) while lowering the overall memory footprint. Furthermore,
when the number of constraints is too large compared to the number of (primal) variables, we
add an option to factorize, using the dense backend, the matrix

H + ρI + 1
µC⊤

Jk(x̂(l),ẑ(l))CJk(x̂(l),ẑ(l)), (4.39)

instead of the one involved in (4.8) (the latter choice is called PrimalDualLDLT, whereas the
first PrimalLDLT). A heuristic (comparing "typical" algorithmic complexity for factorizing,

https://github.com/Simple-Robotics/proxsuite
https://simple-robotics.github.io/proxsuite/
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updating, and solving (4.8) using one of the mentioned matrices) is also available for automatically
choosing which matrix to factorize.

Moreover, a similar heuristic is available for the sparse backend when the system is large-scale.
In such case, a sparse matrix-free routine then solves (4.39) in the same spirit as [Hermans et al.,
2021, Section 4.1.3]. The sparse and dense Cholesky factorizations are also freely available within
the ProxSuite library.

Table 4.3: Default hyperparameters for ProxQP.

Parameter Value Description

α 0.95 primal-dual interpolation
ϵ0
bcl = ϵ0 1 accuracy

ρ 10−6 primal proximal penalization
µmin 10−9 minimal penalization

µf 0.1 penalization decay factor
αbcl, βbcl 0.09, 0.9 BCL hyperparameters

kmax 104 safeguard
µ0

e 10−3 penalization for equality constraints
µ0

i 10−1 penalization for inequality constraints

Warm-start Since ProxQP is built on an augmented Lagrangian-based method, the algorithm
is readily warm-startable. For example, it is a useful feature for solving a cascade of QPs that
change slightly (e.g., for Model Predictive Control, Inverse Kinematics, Inverse Dynamics, SQPs,
etc.). Default initial guesses are also available as options. Among others, by default and motivated
by the fact that equality constraints are always active at an optimal solution, we use the following
initialization for primal and dual variables:

[
x0

z0

]
=
[
H + ρI C⊤

C −µ0I

]−1 [
−g
u

]
,

provided C is an equality constraint matrix and u and equality constraint vector.

Hot-start ProxQP has a dedicated feature, similar to the OSQP, SCS, and qpOASES
solvers [Stellato et al., 2020,Ferreau et al., 2014,O’Donoghue et al., 2016], where we can hot-start
the solver with a factorization from a previous related problem. More precisely, if QP updates con-
cern only linear terms (e.g., u or g), then the updates are realized allocation-free in ProxQP. Fur-
thermore, ProxQP has settings that combine warm-starts with a reuse of the whole previous data
workspace (including the Cholesky factorization) called WARM_START_WITH_PREVIOUS_RESULT.
This feature has been specially designed for solving control or SQP problems with changes con-
cerning only linear parts.

Preconditioning ProxQP contains several preconditioning strategies, enhancing the overall
numerical stability and convergence of the optimization process. The default preconditioner used
in our current implementation is often referred to as the Ruiz equilibration [Ruiz, 2001]; see,
e.g., [Stellato et al., 2020, Algorithm 2], also used in OSQP and QPALM.

Solving closest feasible problems ProxQP can solve the closest feasible QP problem if it
is detected to be primal infeasible (following the same procedure described as in OSQP [Stellato
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et al., 2020, Section 3.4]). If the option is activated, then the following stopping condition will
be tracked: 

∥Hx⋆ + g + C⊤z⋆∥∞ ≤ ϵabs
∥C⊤[Cx⋆ − u]+∥∞ ≤ ∥C⊤1∥∞ϵabs
|(x⋆)⊤Hx⋆ + g⊤x⋆ + (u + s⋆)⊤[z⋆]+| ≤ ϵabs

Dealing with nonconvex QPs Since ProxQP is based on a primal-dual proximal method
of multipliers, it is also able to find local minima of nonconvex QPs, provided that the primal
proximal step size ρ is larger than the lowest negative eigenvalue of the cost Hessian H [Hermans
et al., 2021, Theorem 2.6]. Following the methodology described in [Hermans et al., 2021, Section
4.2], ProxQP also provides routines for evaluating this minimal eigenvalue (using a power
iteration-like algorithm, or methods from the Eigen library) from the and automatically sets ρ to
make the intermediary quadratic sub-problems well-defined and convex.

Solving batches of QPs ProxSuite includes a dedicated data structure for parallel solving
of batches of dense or sparse QPs.

1 import proxsuite . proxqp as solver
2 n = 10 # primal variable
3 n_eq = 2 # equality constraints
4 n_in = 2 # generic type of ineq. constraints
5

6 # Create a qp object and change settings
7 qp = solver .dense.QP(n, n_eq , n_in)
8 qp. settings . primal_infeasibility_solving = True
9 qp. settings . initial_guess = solver . WARM_START_WITH_PREVIOUS_RESULT

10 qp.init (...) # fill with QP data
11 qp.solve ()
12

13 # Optionally set specific backend
14 qp1 = solver .dense.QP(n, n_eq , n_in , solver .dense. DenseBackend . PrimalDualLDLT )
15 qp2 = solver .dense.QP(n, n_eq , n_in , solver .dense. DenseBackend . PrimalLDLT )
16 qp3 = solver .dense.QP(n, n_eq , n_in , solver .dense. DenseBackend . Automatic )
17

18 # Solving N QPs in parallel
19 qp_vector = solver .dense. VectorQP ()
20 for i in range(N):
21 qp = qp_vector . init_qp_in_place (n, n_eq , n_in)
22 qp.init (...) # fill with data of i-th QP
23 solver .dense. solve_in_parallel (n_threads , qp_vector )

Listing 4.1: Code example for using the ProxSuite python API.

4.4 Applications to robotics and beyond

In this section, we evaluate ProxQP against other state-of-the-art approaches on classic control
problems and representative robotic tasks. These practical problems illustrate how ProxQP takes
advantage of structural properties (sparsity structure, warm-starts, hot-starts, early stopping).
We also show that ProxQP’s ability to solve primal infeasible problems can be leveraged in
closed-loop MPC scenarios accounting for perturbations and measurement errors that yield
infeasible problems. Finally, we conclude benchmarking ProxQP against alternative solvers of
the state-of-the-art on more generic types of QPs [Maros and Mészaros, 1999], [Stellato et al.,
2020].
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4.4.1 Benchmark setup and scenarios

Our benchmarks focus on relatively small and medium-sized QPs, typically used for embedded
applications such as in robotics (less than a thousand variables and constraints), with sparse or
dense problem structures.

In the first set of experiments (see Section 4.4.2), we consider sparse convex MPC scenarios:
the benchmark proposed by [Stellato et al., 2020, Section 8.4] and the one proposed by [Wang and
Boyd, 2009, Section 5.A]. We also explain with these synthetic examples how primal infeasibility
solving can be used in the context of closed-loop MPC : (i) first, we initialize one instance with a
primal infeasible point with respect to the dynamics bounds xmin and xmax; (ii) in the latter, we
add an infeasible random perturbation to the dynamics.

In the second set of experiments, we focus on dense problems (see Section 4.4.3): inverse
kinematics tasks, a closed-loop dense MPC tasks for controlling the center of mass of a humanoid
robot, and a real-world closed-loop MPC scenario with the Upkie wheeled-biped robot [tasts-
robots, 2023]. Through an extensive benchmark with the humanoid closed-loop MPC task, we
also highlight that ProxQP is more robust than other state-of-the-art solvers against random
perturbations that render the approximate solution infeasible.

Finally, we evaluate ProxQP on more generic and standard QPs of the literature from the
optimization community.

For all experiments, ProxQP is compared against other state-of-the-art approaches: active-set
methods (qpOASES, quadprog), interior-point methods (MOSEK, qpSWIFT) and augmented
Lagrangian-based methods (SCS, OSQP). We exploit all available features (see Table 4.2) of
each solver considering the problem structure. More precisely, OSQP, qpOASES, and SCS
use warm-starting and hot-starting when possible. Box constraints on the state or control
variables are specified when the solver API allows to do so. Otherwise, they are listed as parts of
the inequality constraints. Moreover, interior-point and augmented Lagrangian-based methods
exploit their underlying early-stopping strategy if it suits the task. The experiments were
conducted on a standard laptop CPU, an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz. The
benchmark is open-source and available at https://github.com/Bambade/proxqp_benchmark
with an easy-to-use interface strongly inspired by the one proposed by OSQP [Stellato et al.,
2020].

4.4.2 Sparse problems

In this subsection, we consider two sets of convex MPC problems: an existing convex-MPC
benchmark from [Stellato et al., 2020, Section 8.4], and a sparse chain of oscillating masses
from [Wang and Boyd, 2009, Section 5A]. In both cases, we run systems over 100 simulation
steps. Their initial states xinit are uniformly chosen between reasonable bounds. We thus
measure the average of the full-time needed for solving all 100 simulation steps. For each separate
randomization seed, the full simulation steps’ is also averaged over 10 consecutive runs in order
to mitigate the impact of loading costs. Furthermore, we consider two different scenarios: (i)
one when early-stopping is relevant (ϵabs = 10−3); and another (ii) where higher accuracy is
required (ϵabs = 10−6). In this test set, only the vectors terms in (QP) change in this test case,
the practitioner can use warm-start and hot-start strategies if available. These features are
exploited by OSQP, qpOASES, SCS and ProxQP. Furthermore, inequality constraints in
these problems only consist of box constraints, a specificity that SCS leverages with a custom
feature. Finally, since the problems have a sparse structure, ProxQP uses its sparse back-end.

Convex MPC test set

Experiment setup In this set of experiments, we consider the MPC benchmark proposed
in [Stellato et al., 2020, Section 8.4]. This benchmark consists of LQR problems with additional

https://github.com/Bambade/proxqp_benchmark
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Table 4.4: Sparse convex MPC benchmark (total runtimes in ms for solving 100 simulation steps)
Problem

type
Sizes ProxQP quadprog OSQP qpOASES SCS qpSWIFT MOSEK

n=76,m=142 5.7±0.2 ✗2 6.7±0.7 37.6±23.9 11.9±2.2 13.5±0.5 82.1±3.51

Convex MPC n=162,m=294 16.4±1.7 ✗2 24.1±6.0 393.9±109.9 51.0±15.7 47.1±4.6 211.5±13.3
ϵabs = 10−3 n=216,m=392 27.6±4.8 ✗2 48.2±29.4 1434.2±480 65.6±30.9 80.0±3.6 311.3±15.41

n=270,m=490 43.2±8.3 ✗2 77.5±65.6 2345.5±608 104.7±66.0 131.0±7.4 454.2±18.6

n=76,m=142 8.5±1.4 ✗2 14.1±8.4 27.1±15.4 25.5±14.6 16.5±0.7 84.0±3.81

Convex MPC n=162,m=294 21.1±2.3 ✗2 94.0±101.9 452.9±98.3 101.8±47.9 57.8±5.3 216.3±14.11

ϵabs = 10−6 n=216,m=392 36.1±4.3 ✗2 150.1±136.0 1626.6±650.1 162.0±95.0 99.5±4.9 314.1±17.41

n=270,m=490 57.0±9.0 ✗2 346.7±362.0 2670.3±842.4 311.1±122.5 164.1±9.9 459.6±21.01

Chain of mass n=462,m=834 45.2±0.8 (28.3±0.6)E3 59.1±1.7 (80.2±1.6)E3 161.1±11.1 215.3±1.3 566.8±14.1
ϵabs = 10−3

Chain of mass n=462,m=834 67.8±11.1 (28.3±0.6)E3 104.9±9.6 (80.2±1.6)E3 172.6±9.8 248.9±3.1 575.5±16.81

ϵabs = 10−6

1 The solution does not satisfy the desired absolute accuracy. 2 quadprog cannot solve QPs that are not strictly convex.

state and input constraints, as described in [Stellato et al., 2020, Appendix A3], with a horizon
T = 10 starting from x0 = xinit ∼ U(−0.5x̄, 0.5x̄) with x̄ ∼ U(1, 2):

min
xt∈Rnx ,ut∈Rnu

x⊤
T QT xT +

T −1∑
t=0

x⊤
t Qxt + u⊤

t Rut,

s.t. xt+1 = Axt + But,

− x̄ ≤ xt ≤ x̄, −ū ≤ ut ≤ ū,

(4.40)

with Q, QT ∈ S+(Rnx), R ∈ S++(Rnu), and A ∈ Rnx×nx , B ∈ Rnx×nu . More precisely, we solve
this optimal control problem in a receding horizon fashion, computing an optimal input sequence
u0, . . . , uT −1, applying the first input u0 to the system and propagating the state to the next
time step. The whole procedure is repeated 100 times. We choose the state variable dimension
nx and control input dimension nu for the context of small embedded systems, concretely
nx = 6, 12, 16, 20 and nu = nx/4. This benchmark generates sparse problems (i.e., the KKT
matrix of the QP has about 5% of nonzeros elements) and QPs whose dimensions (number of
primal variables and constraints) range from 76 to 490.

Runtime results The first and second-row blocks of Table 4.4 show the results of this test case.
We can see that in both scenarios ProxQP is the fasted method with a speed-up ranging from
1.2 to 1.8 in the early-stopping scenario (with respect to OSQP, the second fastest approach);
and from 1.7 to 2.9 in the high accuracy scenario. We can also observe that sparse solvers
(ProxQP, OSQP, SCS, qpSWIFT, MOSEK) obviously provide better timings than dense
solver (qpOASES). Furthermore, one can notice that methods based on ADMM (i.e., OSQP
and SCS) are slower to converge to high-accuracy solutions.

Solving MPC from primal infeasible points In order to solve an MPC problem starting
from xinit ∼ x̄ + U(0, 0.01), we consider the following strategy: the solution found at the first
simulation step provides a solution trajectory x̂t, ût (over a horizon of T time steps for control
inputs ût and T + 1 for the state x̂t) for the closest feasible QP of (4.40) (see orange line
in Figure 4.1). ProxQP also provides optimal shifts ŝu

t , ŝx
t for the inequality constraints on x

and u; and ŝe
t for equality constraints. We make the forward updates as follows:

• u0 = û0 − ŝu
0 : we bring back the closest feasible input solution to the solution space of the

initial QP (so u0 satisfies the input constraints since û0 ≤ ū + ŝu
0 by construction);

• x1 = Ax̂0 +Bu0− ŝe
0: we update the trajectory from a feasible control input u0 and optimal

dynamic x̂0 and shift ŝe
0. It lies on the green line drawn in Figure 4.1. Compared to the
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closest feasible optimal solution x̂1 = Ax̂0 + Bû0 − ŝe
0, we make a drift

x1 − x̂1 = Ax̂0 + Bu0 − ŝe
0 − [Ax̂0 + Bû0 − ŝe

0],
= B(u0 − û0) = −Bŝu

0 ,

which tends towards zero, as soon as the optimal shift over the control input tends towards
zero.

• We repeat the closed-loop process starting from x1 to derive x̂1, û1 and then x2 = Ax̂1 +
B(û1 − ŝu

1)− ŝe
1.

The following update rule is motivated by the following intuition. Assume the steady state xgoal
is still reachable by an unconstrained LQR scheme (see the grey line in Figure 4.1)

min
xt∈Rnx ,ut∈Rnu

x⊤
T QT xT +

T −1∑
t=0

x⊤
t Qxt + u⊤

t Rut,

s.t. xt+1 = Axt + But, x0 = xinit,

(4.41)

with a solution sequence {xLQR
t }t, {uLQR

t }t. As the constraints are linear, strong duality holds,
and the primal of problem (4.41) pLQR equals its dual δLQR for some dual multipliers {yLQR

t }t.
Noting LLQR the Lagrangian of problem (4.41), we have

−∞ < δLQR = LLQR({xLQR
t }t, {uLQR

t }t, {yLQR
t }t)

= L({xLQR
t }t, {uLQR

t }t, {yLQR
t }t, 0, 0),

= inf
xt,ut
L({xt}t, {ut}t, {yLQR

t }t, 0, 0),

with L the Lagrangian of the original problem (4.40), and 0 corresponds to the value of the dual
multipliers associated with the box constraints with respect to xt and ut. It thus guarantees
the dual of the original problem has a non-empty domain and that there exists a closest
feasible solution sequence {x̂t}t, {ût}t (see the orange line in Figure 4.1) with associated optimal
shifts {ŝe

t}t, {ŝx
t }t, {ŝu

t }t.
If we compare now ∥xLQR

1 − xgoal∥22 with ∥x1 − xgoal∥22 assuming that both xLQR
1 > x̄ and

x̂1 > x̄ we see

∥xLQR
1 − xgoal∥22 = ∥xLQR

1 − x̄∥22 + ∥x̄− xgoal∥22+

2(xLQR
1 − x̄)⊤(x̄− xgoal),

and

∥x1−xgoal∥22 = ∥x1 − x̄∥22 + ∥x̄− xgoal∥22 + 2(x1 − x̄)⊤(x̄− xgoal),
= ∥x̂1 −Bŝu

0 − x̄∥22 + ∥x̄− xgoal∥22+
2(x̂1 −Bŝu

0 − x̄)⊤(x̄− xgoal)
= ∥ x̂1 − x̄︸ ︷︷ ︸

=ŝx
1

∥22 + ∥Bŝu
0∥22 − 2(Bŝu

0)⊤(ŝx
1)+

∥x̄− xgoal∥22 + 2(ŝx −Bŝu
0)⊤(x̄− xgoal).

Thus we have:
∥xLQR

1 − xgoal∥22 − ∥x1 − xgoal∥22 = ∥xLQR
1 − x̄∥22+

2(xLQR
1 − x̄)⊤(x̄− xgoal)− ∥ŝx

1∥22 − ∥Bŝu
0∥22−

2(ŝx
1 −Bŝu

0)⊤(x̄− xgoal) + 2(Bŝu
0)⊤(ŝx

1).

(4.42)
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Since xLQR
1 > x̄ and x̄ > xgoal, then (xLQR

1 − x̄)⊤(x̄− xgoal) > 0. Hence, if the optimal shifts ŝu
0

and ŝx
1 are sufficiently small, Equation (4.42) shows that ∥xLQR

1 − xgoal∥2 > ∥x1 − xgoal∥2. The
same calculus shows in this setting that ∥xLQR

1 − x̄∥2 > ∥x1 − x̄∥2. Consequently, this update
rule guarantees in this setting that if xinit is not too far in the sense that the optimal shifts
are small enough, then the update rule provides a point from which the feasible target xgoal is
both closer to reach and closer of the feasible frontier. Our intuition is that the property of this
update rule may eventually lead to a feasible update, with demonstration further investigated in
future work.

We illustrate the application of this update rule with an instance of the convex MPC scenario
for nx = 6 and nu = 1 in Figure 4.2. The bottom figure shows the control trajectory ut of the
system. As expected, it lies in the control bounds −ū and ū. The six upper figures show the 6
components of the dynamics xt. All these components are initially infeasible for a fixed number
of simulation steps since they are above x̄. Since the initial infeasible perturbation is not too
large (i.e., the optimal shifts are sufficiently small), the dynamics eventually converge to the
feasible steady-state position.

Optimal unconstrained LQR dynamics
Closest feasible solution
Chosen dynamics

xmax

0 1 2 3 4 5 6
t

x
x0

LQR

x1
LQR

xgoal

x0
~ -Bs0

~

x1

x1
~

time step

s
ta

te

u

Figure 4.1: A convex MPC problem is initialized with an infeasible state x0 = xinit > xmax. Grey:
Yet, xLQR

0 = x0 enables reaching a horizon T a feasible state xgoal with an unconstrained LQR scheme
(see (4.41)). Orange: It guarantees that a closest feasible trajectory x̂t exists with optimal shifts ŝx

t ,ŝu
t ,ŝe

t .
Green: We choose the update x1

def= x̂1 − Bŝu
0 , which is guaranteed not moving away x1 from xgoal

for sufficiently small optimal shifts ŝx
1 ,ŝu

0 ,ŝe
1. More precisely, ∥x1 − xgoal∥2 ≤ ∥xLQR

1 − xgoal∥2 and
∥x1 − xmax∥2 ≤ ∥xLQR

1 − xgoal∥2.

Sparse chain of oscillating masses

Experiment setup We consider the following MPC problem involving a chain of six masses
interconnected with spring-dampers [Wang and Boyd, 2009, Section 5A]

min
xt∈Rnx ,ut∈Rnu

1
2x⊤

T QT xT + 1
2

T −1∑
t=0

x⊤
t Qxt + u⊤

t Rut,

s.t. xt+1 = Axt + But, x0 = xinit ∼ U(−0.5, 0.5),
− 4 ≤ xt ≤ 4, −0.5 ≤ ut ≤ 0.5,

with R = I and Q = I. The problem dimensions are nx = 12, nu = 3 and the horizon is
T = 30 [Wang and Boyd, 2009, Section 5A]. It generates QPs with 462 variables and 864
constraints.



4.4 Applications to robotics and beyond 67

0 20 40 60 80 100
Simulation steps

1

0

1

1s
t 

st
at

e 
co

m
po

ne
nt 1st component dynamic over 100 simulation steps.

xmax
1

xmin
1

x1

0 20 40 60 80 100
Simulation steps

1.0

0.5

0.0

0.5

1.0

2n
d 

st
at

e 
co

m
po

ne
nt 2nd component dynamic over 100 simulation steps.

xmax
2

xmin
2

x2

0 20 40 60 80 100
Simulation steps

1

0

1

3r
d 

st
at

e 
co

m
po

ne
nt 3rd component dynamic over 100 simulation steps.

xmax
3

xmin
3

x3

0 20 40 60 80 100
Simulation steps

1.0

0.5

0.0

0.5

1.0

4t
h 

st
at

e 
co

m
po

ne
nt 4th component dynamic over 100 simulation steps.

xmax
4

xmin
4

x4

0 20 40 60 80 100
Simulation steps

1.0

0.5

0.0

0.5

1.0

5t
h 

st
at

e 
co

m
po

ne
nt 5th component dynamic over 100 simulation steps.

xmax
5

xmin
5

x5

0 20 40 60 80 100
Simulation steps

1

0

1

6t
h 

st
at

e 
co

m
po

ne
nt 6th component dynamic over 100 simulation steps.

xmax
6

xmin
6

x6

0 20 40 60 80 100
Simulation steps

0.2

0.0

0.2

Co
nt

ro
l i

np
ut

 c
om

po
ne

nt Control inputs over 100 simulation steps.

u1
umax

1
umin

1

Figure 4.2: Closed-loop convex MPC simulation over 100 simulating steps with nx = 6 and nu = 1 starting
from an infeasible initial state x0 using ProxQP. At each new simulation step t, the new control input
equals ut = ût − ŝu

t , so it is guaranteed to be feasible, while the dynamics follow xt = x̂t −Bŝu
t . Since the

initial infeasible perturbation is not too large, the dynamics converge after a fixed number of steps to a
feasible regime.

Runtime results The last two-row blocks of Table 4.4 show the runtime results. We can see
that ProxQP is the fastest method with a speed-up ranging from 1.3 (early stopping scenario)
to 1.5 (high accuracy scenario).

Solving MPC with infeasible perturbations To illustrate another possible scenario where
primal infeasibility solving might be useful, we consider the following setup: at about one fourth
of the simulation (i.e., the 25th simulation step), a random perturbation wt ∼ 4.8 + U(0, 0.01)
disturbs the usual dynamic update

xt+1 = Axt + But + wt,

which is thus guaranteed at the next LQR simulation step to create an infeasible problem since
xt is already close to the steady state for such a system after 25 steps. We apply the same update
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rule as exposed in the previous MPC problem to tackle this infeasible perturbation since the
problem structure is similar. The upper figure in Figure 4.3 shows the 12 components of the
chain system. It becomes infeasible after the 25th closed-loop update. Nevertheless, we can see
that it eventually recovers to the steady state solution after a finite number of time steps. The
bottom figure in Figure 4.3 shows the 3 control input components. We can see that, as expected,
they all satisfy the constraint bounds thanks to the update rule ut = ût − ŝu

t .
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Figure 4.3: Convex MPC problem over 100 simulation steps for controlling a chain of masses with an
infeasible dynamic perturbation at the fourth of the simulation. nx = 12 and nu = 3. The control inputs
and the dynamics are updated following Equation 4.4.2. After a fixed number of time steps, the system
manages to recover its asymptotic steady state while satisfying during the whole process feasible control
bounds.

4.4.3 Dense problems

Inverse kinematics In this set of experiments, we consider different inverse kinematic (IK)
tasks proposed for motion control of articulated robots using Pinocchio [Carpentier et al., 2019]
and the open-source Pink library https://github.com/tasts-robots/pink. The resulting
motion controller is run for 5 s (i.e., solving 1, 000 consecutive QPs with a time-step of 5 ms).
Each such run is repeated 50 times, and we measure the runtime per timestep average for
achieving each IK task. Considering the structure of the problem, OSQP, SCS, qpOASES, and
ProxQP benefit from warm-starting, and ProxQP uses its dense-backend. Furthermore, from
a practitioner’s point of view, we consider the minimal accuracy needed ϵabs for achieving these
tasks (i.e., solving each IK task while maintaining sufficient smoothness in the resulting motions).
We thus imposed ϵabs = 10−5 for each task, except when using STRETCH which required a
lower ϵabs = 10−7 in order to satisfy to be numerically stable while enforcing joint limits.

https://github.com/tasts-robots/pink
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Table 4.5: Dense QP benchmarks (average runtime per time-step (IK) and total simulation runtimes).

Task
name

ProxQP quadprog OSQP qpOASES SCS qpSWIFT MOSEK

UR3 IK 13.2±0.1µs 17.0±3.3µs 15.8±0.2µs 21.7±0.3µs ✗ 1 52.2±1.2µs 323.1±74µs 2

UR5 IK 11.9±0.1µs 16.8±0.2µs 16.5±0.2µs 21.4±0.2µs ✗ 1 53.8±0.8µs 310.8±5.3µs 2

DUAL ARMS IK 17.2±0.1µs 23.3±0.2µs 40.4±0.6µs 330.4±5.8µs 81.5±0.6µs 152.1±1.1µs 554.4±25.1µs 2

KINOVAGEN2 IK 15.8±0.1µs 18.9±0.2µs 17.0±0.2µs 31.4±0.4µs 46.5±1.3µs 53.7±0.4µs 375.4±14.9µs 2

SIGMABAN IK 14.1±0.2µs 25.2±0.4µs 45.2±0.9µs 523.6±4.8µs 68.6±0.5µs 224.9±2.0µs 452.5±8.8µs 2

STRETCH IK 26.9±0.3µs 36.7±0.6µs 53.1±0.9µs 212.6±0.8µs 455.3±23.8µs 2 152.8±1.5µs ✗ 3

CHAIN80 SQP 15.6±0.3ms 355.8±0.9ms 456.5±2.6ms 182±2.9ms 837±16.0ms 2193.9±22.3ms 1554.6±19.5ms 2

CHAIN80w SQP 265.7±2.9ms 610.1±5.7ms 2141.9±22.4ms 467.4±3.3ms 1 ✗ 4 ✗ 4 3444.2±30.3ms 2

Humanoid MPC ϵabs = 10−2 1.6±0.01ms 4.5±1.8ms 1.8±0.01ms 18.0±5.3ms 433.0±21.7ms5 ✗3 70.7±0.7ms
Humanoid MPC ϵabs = 10−4 2.6±0.02ms 4.5±1.8ms 2.7±0.03ms 18.0±5.3ms 80.2±2.9ms5 ✗3 68.3±0.3ms
Humanoid MPC ϵabs = 10−6 4.4±0.05ms 4.5±1.8ms 4.4±0.05ms 18.0±5.3ms 64.3±2.4ms5 ✗3 69.7±0.8ms
1 The solver throws a factorization error (of non-convexity). 2 The solution does not match the desired accuracy 3 The solver does not manage to
satisfy configuration limits. 4 The solver does not manage to handle upper bound constraints and outputs infeasibility errors.
5 Low accuracy iterates provokes with SCS warm starts more difficult QPs to solve in a closed-loop strategy.

Table 4.6: Humanoid locomotion MPC problems with perturbations.

Noise Level ProxQP quadprog OSQP qpOASES SCS qpSWIFT MOSEK

10.0 11.9±9.7% 1.0±0.2% 1.9±0.9% 1.0±0.2% 1.0±0.2% 0±0.0% 1.0±0.2%
5.0 58.38±36.4% 1.1±0.3% 2.1±1.1% 1.1±0.3% 1.1±0.4% 0±0.0% 1.1±0.3%
1.0 100±0.0% 1.4±0.8% 3.5±2.4% 1.4±0.8% 1.5±1.1% 0±0.0% 1.4±0.9%
0.5 100±0.0% 1.8±1.2% 5.5±3.8% 1.9±1.5% 2.1±1.6% 0±0.0% 1.8±1.2%
0.1 100±0.0% 3.3±2.6% 51.6±36.7% 4.3±3.8% 4.9±4.3% 0±0.0% 3.3±2.6%

0.05 100±0.0% 3.5±3.2% 97.6±13.5% 5.0±6.9% 7.7±6.5% 0±0.0% 3.5±3.2
0.01 100±0.0% 4.4±4.4% 100±0.0% 7.7±9.8% 60.2±37.8% 0±0.0% 4.4±4.5%
10−3 100±0.0% 5.0±5.2% 100±0.0% 11.4±12.5% 100±0.0% 0±0.0% 5.0±5.2%
10−4 100±0.0% 5.0±5.2% 100±0.0% 15.5±16.8% 100±0.0% 0±0.0% 5.0±5.2%
10−5 100±0.0% 5.0±5.2% 100±0.0% 83.0±36.5% 99.1±8.9% 0±0.0% 5.1±5.3%
10−7 100±0.0% 5.0±5.2% 100±0.0% 100±0.0% 97±14.8% 0±0.0% 44.8±34.2%
10−9 100±0.0% 5.0±5.2% 100±0.0% 100±0.0% 100±0.0% 0±0.0% 100±0.0%

0.0 100±0.0% 100±0.0% 100±0.0% 100±0.0% 100±0.0% 0±0.0% 100±0.0%

Table 4.5 reports runtimes in its second-row block. It shows that ProxQP is the fastest
method with a speed-up ranging from 1.2 to 1.8 with respect to OSQP or quadprog, the next
two fastest approaches. Apart from OSQP, we note how dense solvers are faster than sparse ones,
which can be explained by the fact that IK problems depict a relatively high ratio of nonzero
elements with respect to the problem size (the ratios of sparsity of the Hessian cost matrix H
ranges from 38% to 100%, and between 4% and 16% for the constraint matrix).

Chain of oscillating masses In this set of experiments, we consider a dense version of the
chain of oscillating masses MPC problem proposed by [Ferreau et al., 2014, Section 6.3] as an
SQP problem. The first test problem CHAIN80 aims at regulating a chain of nine masses
connected by springs into a certain steady state. One end of the chain is fixed on a wall while the
three velocity components of the other end are used as control input with fixed lower and upper
bounds. The prediction horizon of 16 seconds is divided into 80 control intervals. The model
equations are derived from the linearisation of the non-linear ODE model (with 57 states) at the
steady state. Deviation from the steady state, the velocities of all masses, and the control action
are penalized via the objective function. It forms a sequence of 101 QPs with 240 variables with
only box constraints over the input variables. The second test problem CHAIN80w considers
the same settings by adding also state constraints into the optimization problem in order to
ensure that the chain does not hit a vertical wall close to the steady state. It results thus in a
sequence of 101 QPs with 240 variables and 709 constraints. These two SQPs are run 10 times,
and we measure the total runtime necessary for solving these tasks to an accuracy ϵabs = 10−6.

We can see the runtime results in the first-row block of Table 4.5. It shows that ProxQP is
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the fastest method with a speed-up ranging from 1.8 to 11.6 with respect to qpOASES, the
second fastest approach. We can notice again that dense solvers are faster than the other sparse
solvers.
Closed-loop MPC

In this last set of experiments, we consider dense convex MPC problems for controlling a walking
humanoid robot in simulations, and the real robot Upkie [tasts-robots, 2023] in a balancing
scenario. We evaluate again the robustness of the solvers to perturbations.

Humanoid locomotion via cart-table model The task consists in controlling a reduced
model of a humanoid robot, consisting of its center-of-mass c and zero-tilting moment point
(ZMP) z, using the center-of-mass jerk u = ...

c as control input [Kajita et al., 2001,Caron et al.,
2019]. Figure 4.4 depicts a trajectory of this system. The goal is to keep the ZMP inside the
support polygon of the feet while achieving a prescribed walking velocity. The resulting MPC
problem can be cast as a quadratic program [Wieber, 2006a] of the form:

min
xt∈Rnx

ut∈Rnu

wT ∥xT − xgoal∥2
2 +

T −1∑
t=0

wx∥xt − xgoal∥2
2 + wu∥ut∥2

2,

s.t. xt+1 = Axt + But, x0 = xinit,

Cxt + Dut ≤ et,

(4.43)

where nx = 3 (for center-of-mass position c, velocity ċ and acceleration c̈), nu = 1 and T = 16.
As in [Wieber, 2006a], horizontal coordinates can be decoupled, so that we can focus on single-
dimensional coordinates c, z ∈ R. For the sake of this example we choose lateral coordinates and
a target velocity of zero corresponding to walking in place.

The problem is solved with respect to the stacked vector U = [u0 . . . uT −1] of control
inputs, deriving states xt linearly from U by recursive expansion of the dynamics xt+1 =
Axt + But [Audren et al., 2014]. This leads to a series of dense QPs with 16 variables and
inequality constraints. The experiment is run for 100 simulation steps with a duration of 0.1s
each, and the results are averaged over 100 trials. We measure the average total runtime for
solving the task. Since the system is time-invariant, OSQP, SCS, qpOASES, and ProxQP
benefit from warm-starting and hot-starting. In our experiments, setting ϵabs = 10−2 is sufficient
to solve the task for all solvers based on IP and AL-based methods. Yet, they do not benefit the
same way from this early-stopping feature. For this reason, we execute the runtime benchmark
for ϵabs = 10−2, ϵabs = 10−4 and ϵabs = 10−6.

The runtime results are displayed in the last row block of Table 4.5. ProxQP is slightly
faster than OSQP or quadprog, the best performing state-of-the-art solvers on this test set,
where we note again how, as expected, dense solvers are generally faster than sparse solvers.
Finally, we can see that SCS benefits less from early stopping here. Timings for SCS improve
when the iterates are more accurate.

Robustness to perturbations We apply random (Gaussian) noise at each simulation step
to the center-of-mass acceleration with an amplitude σ modeling state observation inaccuracies
or unmodeled dynamics. When the ZMP is close to the edge of its support polygon, a small
perturbation in center-of-mass acceleration can cause it to cross the edge, which would break
the foot contact. For this reason, it is common practice to add safety margins to ZMP support
areas in real systems, sometimes reducing them to a square well within the full area [Scianca
et al., 2020]. We include such margins in our QP formulation, as depicted by the light-dotted
lines in Figure 4.4. In order to quantify the robustness of the different solvers to various noise
amplitudes, we measure the percentage of the full trajectory (100 simulation steps) each solver
manages to solve and average over 100 seeds. This closed-loop task is interrupted if the primal
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Figure 4.4: Controlling the lateral center-of-mass trajectory (blue) to maintain the ZMP (red) within the
real support polygon (dotted dark green and blue). Light dotted lines are more conservative ZMP bounds
used during solving QP. Random perturbation of the current center-of-mass acceleration can lead to a
ZMP outside the support polygon and a primal infeasible QP.

feasibility violation with respect to the original support polygon (dark dotted lines) exceeds
the accuracy of ϵabs = 10−2, or if the solver does not return any solution. For all solvers, we
set the primal infeasibility tolerance to the minimum possible value in order to solve as many
problems as possible. In Table 4.6, ProxQP solves the entire trajectory for noise amplitudes
lower than 1.0 m/s2, while the second best solver OSQP reaches this level of performance for a
noise amplitude of 10−2 m/s2. All other solvers that are based on interior-point or active-set
methods exhibit a less robust behavior on this task.

Real-robot balancing We test ProxQP on real hardware with closed-loop model predictive
control experiments on the Upkie wheeled biped. The controller runs entirely on the robot’s
embedded computer, a Raspberry Pi 4 Model B equipped with a quad-core ARM Cortex-A72
64-bit SoC @ 1.8 GHz. Note that this CPU has fewer cores and a lower frequency than the
standard laptop CPU used in other test cases. We formulate the MPC problem as a quadratic
program using the same strategy as in (4.43), for a discretization of the linearized cart-pole model
(for wheels) rather than cart-table (for flat feet). States observed from IMU Kalman filtering
and wheel odometry are fed directly as an initial state xinit to the MPC problem. We set T = 50
timesteps with a time discretization of 20 ms, resulting in a receding horizon duration of 1 s. Task
weights are chosen as wT = 1, wx = 10−3 and wu = 10−3. The resulting QPs have dimension
n = 50 with m = 100 inequality constraints. They are solved by ProxQP with hot-starting
in 0.8 ± 0.02 ms, fitting well within the budget of a 200 Hz control loop. Figure 4.5 reports
the resulting computation times alongside observed states for a sample run of the balancing
controller on the robot. The source code for this experiment is available in the mpc_balancer
directory of the robot’s repository [tasts-robots, 2023].
4.4.4 Generic QPs

Maros-Mészáros problems The Maros-Mészáros test set [Maros and Mészaros, 1999] is
composed of 138 “hard” QPs. Most of them are sparse and ill-conditioned problems, and they
contain up to 90597 variables and 180895 constraints. About 83% of the problems have a sparsity
level lower than 10% for the Hessians H, as well as for the constraint matrices. We restrict the
benchmark to problems whose dimensions (constraints and variables) are below or equal to 103.
This results in a subset of 62 problems, about 45% of the Maros-Mészáros test set, for which
two-third of the problems have a sparsity level no larger than 20%.

We report performance profiles [Stellato et al., 2020,Hermans et al., 2021,Bambade et al.,
2022] on Figure 4.6 comparing ProxQP with its dense backend against the other solvers of the
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Figure 4.5: Closed-loop model predictive control with ProxQP on the Upkie wheeled biped. The top plot
shows the time taken by the hot-started solver to solve MPC problems at each control cycle on the robot’s
embedded computer. The bottom plot shows the angle between the robot’s torso and the vertical at the
corresponding times, illustrating how it balances upright.

testbed. Performance profiles correspond to the fraction of problems solved as a function of a
certain runtime (measured in terms of a multiple of the runtime of the fastest solver for that
problem). Figure 4.6 depicts that even-though the problems are sparse, ProxQP always depicts
the best performance profile. Hence it is the fastest approach for solving the problems of this
testbed.

Random QPs with finite upper and lower inequality constraints. We generated random
QPs with 15% of sparsity for both matrices H and C in the spirit of the benchmark API from
OSQP [Stellato et al., 2020, Hermans et al., 2021, Bambade et al., 2022]. The dimension d
of those problems is in the range from 10 to 1000. For each dimension, we generated 1000
problem instances with different random seeds and averaged the runtime of each algorithm on 10
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Table 4.7: Shifted geometric means (SGM) and failure rates (FR) for solving sparse QPs. The lower the
better.

ProxQP quadprog OSQP qpOASES SCS qpSWIFTMOSEK

SGM 1 18.8 2.6 36.7 9.0 261.2 3279.8
FR 0.0% 0.02% 0.0% 0.0% 0.02% 3.31% 25.38%
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Figure 4.6: Performance profiles on small to medium-sized Maros-Mészáros problems, using a Core i5 -
5300U - 5th Generation @ 2,3 GHz processor. Target accuracy ϵabs = 10−6 and time limit set to 1000
seconds. The higher the better.
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consecutive runs to limit the impact of loading costs. We then report the failure rate and the
shifted geometric means [Bambade et al., 2022, Section VI-Db] in Table 4.7. ProxQP is about
2.6 times faster across all the problems than OSQP, the second fastest approach. Furthermore,
ProxQP, OSQP, and qpOASES exhibit no failure rate.

For the last testbed of experiments, the level of accuracy required for termination is arbitrarily
set to ϵabs = 10−9 (see criterion in (3.10)) so that to show across all these experiments which
solvers manage to be the most accurate, the fastest, and the most robust within a large variety
of QPs. Furthermore, the qpSWIFT is replaced by the Interior Point solver GUROBI and SCS
is removed from the solver testbed.

Remark 4 (Accuracy choice). Choosing a low ϵabs has a few non-negligible advantages when
comparing solvers. Indeed, the fact a solver might not reach every desired level of accuracy
(within the available finite precision limits) is typically due to either (i) an algorithm that has
a (very) slow convergence, or (ii) somehow “inappropriate” underlying subroutines (including
linear algebra ones) with a limited working precision/stability range, worsening the effect of finite
precision. Hence, such low accuracy level reveals which solvers provide on the same time (i) an
algorithm whose capabilities allow to reach high accuracy and (ii) a set of underlying numerical
routines allowing to reach high precisions in reasonable times.

Random QPs with finite upper inequality constraints. Concerning random problems,
two different levels of sparsity (0.15, 0.5) were used for generating the random matrices of the
QPs in the spirit of the benchmark API from OSQP [Stellato et al., 2020]. The dimensions of
those problems were picked from d = 10 to d = 1000. For each set of parameters (sparsity levels
and dimensions), we generated 5 problem instances with different random seeds and averaged
the running time of each algorithm on 10 consecutive runs (to limit the impact of loading costs).
The results are provided in Figure Figure 4.7 using bar plots (including the median, the minimal
and maximal execution timings). We also report base statistics in Table 4.8.

In particular, Figure 4.7 shows that even in a sparse configuration (we recall that our solver
uses a dense back-end), our solver is around 4 to 5 times faster than OSQP (the second best
solver from our test-bed) for examples of dimensions d ≈ 50 (which is representative of typical
robotic applications). When dimension grows to d ≈ 1000, the speed-up reaches almost an order
of magnitude.

The failure rates observed in Table 4.8 for MOSEK and GUROBI solvers come from the
fact they are not able to reach the desired precision ϵabs = 10−9: solutions proposed are not
accurate enough. Consequently, it also impacts their geometric means.

Table 4.8: Shifted geometric means (SGM) and failure rates (FR) for sparse equality and inequality
constrained QPs with finite upper bounds and high accuracy target (ϵabs = 10−9). The lower the better.

ProxQP quadprog OSQP qpOASESGUROBI MOSEK

SGM 1 18.8 4.6 305.6 1146.9 40891.4
FR 0.0% 0.0% 0.0% 0.0% 16.0% 80.0%

Degenerate pure inequality-constrained problems. Figure 4.8 provides the results of our
numerical experiments when generating pure inequality-constrained QPs where the matrix H
is positive definite but for which LICQ conditions are no longer satisfied (by duplicating the
constraints), a common type of degeneracy. We observe from Figure 4.8 that for problems of
dimensions d ≈ 50 our solver is about 3 times faster than OSQP (the second best solver in this
set of experiments).
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Figure 4.7: Solving times for sparse equality and inequality constrained QPs, using a Core i5 - 5300U -
5th Generation @ 2,3 GHz processor. For each set of executions, the median is shown with a dot.

Table 4.9: Shifted geometric means (SGM) and failure rates (FR) for sparse degenerate pure inequality
constrained QPs with finite upper bounds and high accuracy target (ϵabs = 10−9). The lower the better.

ProxQP quadprog OSQP qpOASESGUROBI MOSEK

SGM 1 3.7 7.1 305.6 461.2 16065.0
FR 0.0% 0.0% 0.0% 0.0% 14% 76.0%
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Figure 4.8: Solving times for sparse degenerate pure inequality constrained QPs, using a Core i5 - 5300U -
5th Generation @ 2,3 GHz processor. For each set of executions, the median is shown with a dot.

We report base statistics in Table 4.9. The failure rates observed for MOSEK and GUROBI
solvers come from the fact, again, they are not able reaching the desired precision ϵabs = 10−9,
their outputted solutions being not accurate enough.

Non-strongly convex QPs. As before, in the spirit of the OSQP [Stellato et al., 2020], we
generate random QPs for which the Hessian H is not strictly positive definite. We can see
in Figure 4.9 that when matrices have 15% of sparsity, OSQP and ProxQP have a similar speed
for d ≤ 200. For higher dimension, we observe that ProxQP is approximately 1.8 times faster
than OSQP. When sparsity is about 50%, one can see in Figure 4.10 ProxQP is about 1.8 to 2
times faster for d ≈ 50. When d ≈ 1000, ProxQP is about four times faster.

We report base statistics in Table 4.10. The failure rates observed for MOSEK and GUROBI
solvers come from the fact, again, their solutions not being precise enough.

Table 4.10: Shifted geometric means (SGM) and failure rates (FR) for sparse pure inequality constrained
QPs with non-strictly positive definite Hessian with finite upper bounds and high accuracy target (ϵabs =
10−9). The lower the better.

ProxQP quadprog OSQP qpOASESGUROBI MOSEK

SGM 1 NA 2 70.1 917.2 6446.9
FR 0.0% 100.0% 0.0% 0.0% 34% 72.0%
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Figure 4.9: Solving times for sparse pure inequality constrained QPs with non-strictly positive definite
Hessian, using a Core i5 - 5300U - 5th Generation @ 2,3 GHz processor. For each set of executions, the
median is shown with a dot.
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Chapter5
Preliminaries on differentiable optimization for convex QPs

Abstract. In this chapter, after setting the problem statements and the conditions for being
well-posed, we provide a summary of the main algorithmic techniques used for designing efficient
QPs layers. More precisely, we review the unrolling methods, implicit differentiation techniques,
and the Alternate differentiation approach under the assumption that the solution for a QP is
differentiable. For each of the methods reviewed, we propose a summary of a representative
algorithm, practical pros and cons, references to existing implementations, and more details
about practical implementations. In a second time, we provide a brief overview of the alternative
"informative gradient" used by practitioners when a solution for a QP is not differentiable.
This introduction is notably based on the reference books [Krantz and Parks, 2002, Dontchev
et al., 2009b] and the seminal works by [Amos and Kolter, 2017,Agrawal et al., 2019,Sun et al.,
2022,Blondel et al., 2022,Gould et al., 2021,Berthet et al., 2020,Wilder et al., 2019,Mandi and
Guns, 2010]. The introduction also mentions other specific references.

Chapter content
5.1 QP layer: problems statement . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 QP layers design under differentiability assumptions . . . . . . . . . 81

5.2.1 Unrolled differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2 Implicit differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3 Alternate differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Some alternative "informative gradients" . . . . . . . . . . . . . . . . 86
5.3.1 Least square estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 Randomized-smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.3 Other regularizations of the cost function . . . . . . . . . . . . . . . . . 87

5.1 QP layer: problems statement

In this chapter, we consider some loss L : θ ∈ Rd 7→ R which needs to be minimized in order to
solve a learning task. We suppose further that there exists some differentiable h : Rn 7→ R, such
that L(θ) def= h(x⋆(θ)) where x⋆(θ) must be a solution of a convex QP parameterized by θ

x⋆(θ) ∈ argmin
x∈Rn

{
f(x; θ) def= 1

2x⊤H(θ) x + x⊤g(θ)
}

s.t. C(θ) x ≤ u(θ),
(QP(θ))

with H(θ) ∈ Sn
+(R) a real symmetric positive semi-definite matrix of Rn×n, g(θ) ∈ Rn, C(θ) ∈

Rm×n and u(θ) ∈ Rm.
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Incorporating such an optimization problem as a layer within neural networks has recently
become practical and effective for solving certain machine learning tasks, see, for instance [Geng
et al., 2020, Amos and Kolter, 2017, Lee et al., 2019, Le Lidec et al., 2021, Donti et al., 2017,
de Avila Belbute-Peres et al., 2018,Amos et al., 2018,Bounou et al., 2021]. Such layers allow
capturing useful domain-specific knowledge or priors. Unlike conventional neural networks, where
the output of each layer is provided by a simple (explicit) function of its input, the input of an
optimization layer is the parameter of an optimization problem, and its output is a solution to
this problem.

We will denote H, g, C, and u without explicit dependence on θ when this dependence is
clear from the context or does not generate any ambiguity. Throughout this chapter, we make
the assumption that (QP(θ)) is well-posed: it is bounded below (i.e., dual feasible) and primal
feasible (i.e., there exists at least x s.t., C(θ)x ≤ u(θ)). Obtaining a solution x⋆(θ) for (QP(θ))
is what is commonly referred to as a forward pass.
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Figure 5.1: Example of a feed-forward neural network.
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 𝜕L                  

𝜕z 
 𝜕L                  

𝜕h 
 𝜕L                   𝜕L                  

Figure 5.2: Example of a Quadratic Programming layer (with D nonsingular).

Figure 5.1 and Figure 5.2 provide two illustrative examples of a neural network and a QP
layer. Both layers have potentially fixed (in blue) and trained (in red) parameters. The main
difference is that the output y⋆ of the feed-forward neural network has a closed-form expression,
whereas the output of the QP layer is the solution of a constrained QP. Finally note that to
ensure the quadratic program is always well-posed, extra parameters (i.e., zt and ht) are trained.

First problem statement [minimizing L efficiently under differentiability assumptions]:
In current learning pipelines, L is minimized via Gradient Descent (GD)-based approaches, i.e.,
it iteratively repeats starting from some θ0 ∈ Rd

θt+1 ←− θt − α∂L(θt)
∂θ , (5.1)

for some step-size α > 0, and where ∂L(θt)
∂θ refers to a gradient for L. Furthermore, to efficiently

compute at each epoch ∂L(θt)
∂θ , learning pipelines exploit the fact that L(θt) ∈ R to backpropagate
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derivatives via the chain-rule using automatic differentiation in reverse mode

∂L(θt)
∂θ = ∂L(x⋆(θt))

∂x
∂x⋆(θt)

∂θ . (5.2)

Yet, this holds provided x⋆(θ) is differentiable with respect to θ, which is challenging for a
few reasons. First, there is usually no practical way to compute a closed-form for x⋆(θ), even
when QP(θ) is well-defined. Second, even when such an x⋆(θ) exists, there is no guarantee for it
to be unique nor differentiable –at least in the classical sense– w.r.t. θ (see, e.g., the assumptions
of the "classical" implicit function theorem with C1 functions [Dontchev et al., 2009b, Theorem
1B.1], and extensions for nonsmooth functions [Robinson, 1991, Theorem 3.2], [Bolte et al.,
2021, Theorem 2] or [Krantz and Parks, 2002, Section 5.2]).

Thus the first problem statement consists in providing a method for computing efficiently ∂L(θt)
∂θ .

∂
∂θ should be a chainable notion of derivative which makes the associated GD-based approach (5.1)
converge under standard assumptions.

Second problem statement [L has no differentiability assumptions]: By construction
L is differentiable w.r.t. θ if and only if x⋆ is differentiable w.r.t. θ. Hence as soon as x⋆ has
no notion of differentiability, then L has none either. In such a setting, the problem statement
consists in providing a practical proxy for ∂x⋆

∂θ which still feeds the learning pipeline (i.e., the
chain rule (5.2) and then the GD-based update (5.1)) with "alternative informative gradients".

In the rest of the chapter, we will briefly review current methods used for addressing the first
and second problem statements.

5.2 QP layers design under differentiability assumptions

5.2.1 Unrolled differentiation

A first approach for computing ∂x⋆

∂θ consists of unrolling the iterations of the optimization algorithm
outputting the last iterate xk as a proxy for the optimization problem solution x⋆ [Domke,
2012,Monga et al., 2021]. This allows the explicit construction of a computational graph relating
the algorithm output to the inputs. Then, ∂x⋆

∂θ is approximated by ∂xk

∂θ , which is obtained via
forward or reverse automatic differentiation (see toy examples in Figure 5.3 and Figure 5.4).

This technique works particularly well for unconstrained optimization, where gradient descent
is typically used as an optimization into the inference procedure [Belanger and McCallum,
2016,Belanger et al., 2017,Amos et al., 2017,Metz et al., 2019]. It is also very easy to implement
within the PyTorch or TensorFlow frameworks, which naturally deal with forward or
backward automatic differentiation.

However, this requires reimplementing the algorithm using the automatic differentiation
system, and not all algorithms are necessarily autodiff-friendly. Notably, in the context of
inequality-constrained QPs, iterative algorithms may use a projection operator that may be
difficult to unroll through (e.g., ADMM-based methods). Moreover, if we note O(M) the typical
complexity needed for outputting xk(θ), then

• Forward-mode autodiff has a time complexity that scales linearly with the number of
variables in θ ∈ Rd. Hence, it typically has O(Md) time complexity.

• Reverse-mode autodiff has memory complexity that scales linearly with the number of
algorithm iterations. Hence, it typically has O(M) time complexity and O(Md) memory
complexity.



5.2 QP layers design under differentiability assumptions 82

L(x(θ0,θ1))

x(θ0,θ1)

θ1
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Figure 5.3: Example of a Forward Automatic differentiation scheme.
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∂x
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Figure 5.4: Example of a Backward Automatic differentiation scheme.
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Finally, recently [Scieur et al., 2022] has highlighted the "curse of unrolling" by showing that for
unconstrained quadratic optimization, there is a tradeoff between the convergence speed of the
iterates and that of the Jacobian.

We will see that better complexity bounds can be obtained using implicit differentiation in
the case of constrained QPs.

5.2.2 Implicit differentiation

A second approach consists of implicitly relating an optimization problem solution to its inputs
using optimality conditions, which is possible under certain regularity conditions [Gould et al.,
2016,Gilbert, 2021,Fiacco and McCormick, 1968,Robinson, 1980].

In a machine learning context, such implicit differentiation has been used for stationarity
conditions [Bengio, 2000, Lorraine et al., 2020], KKT conditions [Chapelle et al., 2002, Gould
et al., 2016,Niculae et al., 2018] and the proximal gradient fixed point [Niculae and Blondel, 2017,
Bertrand et al., 2020]. An advantage of implicit differentiation is that a solver reimplementation
is unnecessary, allowing it to build upon decades of state-of-the-art software. Notably, the
OptNet layer [Amos and Kolter, 2017] differentiates through the KKT conditions for (QP(θ)).
This technique has been then extended to convex conic problems with CvxpyLayer [Agrawal
et al., 2019], and more generally to other types of implicit differentiation problems with JaxOpt
framework [Blondel et al., 2022].

In the rest of this section, we detail the techniques used in OptNet and its current limitations
for addressing the two problem statements.

The KKT optimality conditions for (QP(θ)) can be written for some x⋆ ∈ Rn and z⋆ ∈ Rm
+

g(x⋆, z⋆, θ) def=
[
H(θ)x⋆ + g(θ) + C(θ)⊤z⋆

D(z⋆)(C(θ)x⋆ − u(θ))

]
= 0, (5.3)

where D(z⋆) corresponds to a diagonal matrix formed from vector z⋆. If we assume that H(θ),
g(θ), C(θ) and u(θ) are continuously differentiable w.r.t. θ, and that the set of points {i ∈
[1, m]|z⋆

i = 0, C(θ)⊤x⋆ = ui(θ)} is empty, then the Implicit function theorem (see Theorem 5
from [Dontchev et al., 2009b, Theorem 1B.1]) holds and ∂x⋆

∂θ and ∂z⋆

∂θ can be found as solution
from [Amos and Kolter, 2017, Equation 6][

H C⊤

D(z⋆)C D(Cx⋆ − u)

] [
∂x⋆

∂θ
∂z⋆

∂θ

]
= −

[
∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

D(z⋆)(∂C
∂θ x⋆ − ∂u

∂θ )

]
, (5.4)

provided that the matrix involved in this linear system is non-singular.

Theorem 5 (Implicit Function Theorem). Let g : Rn+m × Rd → Rn+m be continuously dif-
ferentiable in a neighborhood of (w̄, θ̄) and such that g(w̄, θ̄) = 0, and let the partial Jacobian
of g with respect to w at (w̄, θ̄), namely ∂g(w̄,θ̄)

∂w , be non-singular. Then the solution mapping
S(θ) def= {w|g(w, θ) = 0} has a single-valued localization s around θ̄ for w̄ which is continuously
differentiable in a neighborhood Q of θ̄ with Jacobian satisfying

∂s(θ)
∂θ = −∂g(s(θ),θ)

∂w

−1 ∂g(s(θ),θ)
∂θ , ∀θ ∈ Q. (5.5)

Under the assumptions above, L is locally continuously differentiable with respect to θ. Hence,
the chain rule (5.2) holds. [Amos and Kolter, 2017] propose to use the following computational
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trick to derive the backward pass efficiently

∂L
∂θ

= ∂L
∂x⋆

⊤ ∂x⋆

∂θ
+ ∂L

∂z⋆

⊤ ∂z⋆

∂θ

= −(−
[

δL
δx⋆

δL
δz⋆

]
)⊤
[

∂x⋆

∂θ
∂z⋆

∂θ

]

= −(
[

H C⊤

D(z⋆)C D(Cx⋆ − u)

] [
b⋆

1
b⋆

2

]
)⊤
[

∂x⋆

∂θ
∂z⋆

∂θ

]

= −
[
b⋆

1
b⋆

2

]⊤

(−
[

∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

D(z⋆)(∂C
∂θ x⋆ − ∂u

∂θ )

]
)

= (b⋆
1)⊤(∂H

∂θ
x⋆ + ∂g

∂θ
+ ∂C

∂θ

⊤
z⋆)

+ (b⋆
2)⊤D(z⋆)(∂C

∂θ
x⋆ − ∂u

∂θ
)

= (b⋆
1)⊤ ∂H

∂θ
x⋆ + (∂C

∂θ
b⋆

1)⊤z⋆ + (b1)⊤ ∂g

∂θ

+ (D(z⋆)b⋆
2)⊤(∂C

∂θ
x⋆ − ∂u

∂θ
),

with b⋆
1 and b⋆

2 the solution of the linear system[
H C⊤D(z⋆)
C D(Cx⋆ − u)

] [
b⋆

1
b⋆

2

]
= −

[
δL
δx⋆

δL
δz⋆

]
. (5.6)

In practice, since OptNet uses for its forward pass an Interior Point Method, internally they
factorize a matrix K of the form

K =

H 0 C⊤

0 D(z⋆) D(Cx⋆ − u)
C I 0

 ,

which is symetrized by scaling the second row block by D(1/[Cx⋆ − u]). Hence, (5.6) can be
solved using a unique backsolve from the forward pass by caching the previous factorization of
K. Thus, the backward pass essentially amounts to cheap operations compared to the forward
pass (linear system solving, matrix multiplication, and scalar products vs. matrix factorization).
Compared to unrolling methods, Implicit differentiation for QPs can hence be achieved through
only O(M) operations.

Although remarkable for its reduced complexity, the approach proposed in the OptNet
framework has a few limitations.

First, it is constrained by some assumptions of Theorem 5. Practically speaking, it requires
H to be positive definite, which reduces the range of application of this approach. Note that this
approach performs well in practice when (5.6) has a solution. Hence, the nonsingularity of the
involved matrix is not in practice necessary (which can happen when C is not full rank).

Secondly, the approach is limited in practice by the KKT formulation used. Indeed, if some
solution x⋆ lies on the boundary of some constraints, then the symmetrized matrix K formed
through the scaling D(1/[Cx⋆−u]) has a condition number which blows up. It reduces in practice
the applicability of the method.

Third, the method can only learn QP layers for which the primal feasibility is structurally
enforced. Figure 5.5 provides such an example from [Amos and Kolter, 2017]. In order to learn
the equality constraint matrix A during the training process, the authors add a supplementary
variable z0 to ensure that the resulting QP is always primal feasible during the training process.
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Yet, other approaches could allow infeasibility during training while driving the layer to be
feasible at test time (e.g., A is learned such that some fixed hard constraint b lies in its range
space).

Forward passQP layer

input

Backward pass

Figure 5.5: Strictly convex QP layer (as in OptNet [Amos and Kolter, 2017]). The constraint matrix A
and an extra variable z0 (strictly positive) are learned to ensure that the QP is always primal feasible
(structural feasibility).

Finally, if x⋆(θ) or z⋆(θ) do not have any notion of differentiability, then the OptNet layer
does not provide any other alternative informative gradients.

5.2.3 Alternate differentiation

H. Sun and co-authors [Sun et al., 2022] have recently proposed an ADMM-type method, called
Alt-Diff, to alternatively solve a constrained convex optimization program and obtain approximate
Jacobians at the current approximate solutions.

The ADMM steps can be written as

xk+1 = arg min
x∈Rn

LA(x, sk, zk; θ, µ), (5.7a)

sk+1 = arg min
s∈Rm

+
LA(xk+1, s, zk; θ, µ), (5.7b)

zk+1 = zk + µ(Cxk+1 + sk+1 − u), (5.7c)

where LA is the Augmented Lagrangian function

LA(x, s, z; θ, µ) def= f(x; θ) + z⊤(C(θ)x + s− u(θ)) + µ
2∥C(θ)x + s− u(θ)∥22. (5.8)

Note that if ∇2
xLA is strictly convex, then xk+1 is explicitly obtained as

xk+1 = −(H + µC⊤C)−1(g + C⊤zk + µC⊤(sk − u)). (5.9)

Furthermore, sk+1 has the closed form solution

sk+1 = Π+(− 1
µ − Cxk+1 + u), (5.10)

where Π+ is the projection onto the positive orthant. The function is path differentiable since it
is a semi-algebraic and monotone function [Bolte and Pauwels, 2020, Proposition 2(iv)]. Hence,
its conservative Jacobian is a "chainable" gradient [Bolte et al., 2021].

Assuming ∇2
xLA is strictly convex, and H(θ), g(θ), C(θ), u(θ) are continuously differentiable

w.r.t. θ, the Implicit Function Theorem Theorem 5 then holds and can be applied to (5.7a).
Hence ∂xk+1

∂θ can be derived through

∂xk+1

∂θ = −(∇2
xLA(xk+1))−1∇x,θLA(xk+1), (5.11)
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Applying differentiation techniques to (5.7) leads then to [Sun et al., 2022, Equations 7]

∂xk+1

∂θ
= −(∇2

xLA(xk+1))−1∇x,θLA(xk+1), (5.12a)

∂sk+1

∂θ
= − 1

µ
sgn(sk+1) · 1⊤ ⊙

(
∂zk

∂θ
+ µ

∂(Cxk+1 − u)
∂θ

)
, (5.12b)

∂zk+1

∂θ
= ∂zk

∂θ
+ µ

∂(Cxk+1 + sk+1 − u)
∂θ

, (5.12c)

Assuming L-smoothness for ∇2
xf and ∇x,θLA and strict convexity for LA, then it has been

shown [Sun et al., 2022, Theorem 4.1] that the Alt-Diff method (see Algorithm 10) ensures
that ∂xk

∂θ converges towards ∂x⋆

∂θ since xk converges then to x⋆ and we have

∥∂xk

∂θ −
∂x⋆

∂θ ∥ ≤ B∥xk − x⋆∥, (5.13)

for some constant B > 0.
Algorithm 10: Alt-Diff

Inputs: θ from previous layer, x0, s0, z0

while termination criterion is satisfied do
Forward update following (5.7);
Primal update ∂xk+1

∂θ following (5.12a);
Slack update ∂sk+1

∂θ following (5.12b);
Dual update ∂zk+1

∂θ following (5.12c);
k ←− k + 1;

end

Alt-Diff requires to keep in memory previous derivative iterates ∂xk

∂θ , ∂zk

∂θ and ∂zk

∂θ which has
O((2n+m)d) memory complexity. Furthermore, at each iteration of ADMM, it can require three-
dimensional tensor vector operations, such as ∂C

∂θ xk+1 (which has typically O(dmn) dimension
complexity). Thus, if ADMM time complexity O(M) can be decomposed with Mfact for the
initial factorization complexity and some cost Miter for N typical iteration, then the new total
time complexity would be of order: O(Mfact + N(Miter + dn(n + m))) = O(M + Ndn(n + m)).
It is, in general, larger than the complexity involved with OptNet, which does not require much
for the backsolves of the backward pass (it typically costs O((n + m)2)).

Alt-Diff approach is not guaranteed to reduce the computational burden of differentiable
optimization in all cases. Notably, if θ includes differentiation w.r.t. elements of H and C, then
O(d) = O(n(n + m)) and the approach is then slower. Furthermore, similarly to OptNet, this
approach requires strict convexity for f and it does not enable learning specifically C while
letting u fixed. Finally, it does not provide alternative informative "gradients" if x⋆ or z⋆ are not
differentiable.

5.3 Some alternative "informative gradients"
In this section, we provide different practical alternative "gradients" proposed in the literature
when a function is known to be not everywhere differentiable (i.e., in this setting ∂x⋆

∂θ ). We also
add guarantees, if there exist, and practical pros and cons.

5.3.1 Least square estimate

Algebraically speaking, non-differentiability often amounts to trying to solve a linear system
involving a singular matrix. Practitioners often use, in such cases, a least-square estimate. In
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the context of implicit differentiation, it amounts to solving instead

∂LS
θ x⋆, ∂LS

θ z⋆ ∈ arg min
∂LS

θ x

∂LS
θ z

∥∥∥∥∥
[

H C⊤

D(z⋆)C D(Cx⋆ − u)

] [
∂LS

θ x
∂LS

θ z

]
+
[

∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

D(z⋆)(∂C
∂θ x⋆ − ∂u

∂θ )

]∥∥∥∥∥
2

2
, (5.14)

which always has a solution. The considerable advantage of Least square estimates is two-fold:
(i) First, they are easy to implement since a lot of dedicated iterative methods can efficiently solve
this problem (e.g., iterative refinement [Parikh and Boyd, 2014], conjugate gradient [Nocedal and
Wright, 2006] applied to normal equations, or LSQR [Paige and Saunders, 1982]); (ii) Second,
they perform practically well, notably when the linear system has a solution while not being
unique (see e.g., the discussion of [Krantz and Parks, 2002, Section 5.4] which notably provides
examples with non-differentiable function, singular associated linear systems and still the viable
application of the implicit function theorem). This explains why such a heuristic is in practice
widely used, notably in frameworks such as CvxpyLayer (see [Agrawal et al., 2019, Appendix
B]), JaxOpt [Blondel et al., 2022, Section 2], or [Gould et al., 2021].

5.3.2 Randomized-smoothing

Another possible way to approximate a non-differentiable function by a differentiable one is to
convolve it with a smooth function [Vlastelica et al., 2019,Berthet et al., 2020]. In our context,
this corresponds to considering

x⋆
σ(θ) = E[x⋆(θ + σZ)], (5.15)

where Z is a random variable with strictly positive and sufficiently differentiable density, and σ
is a positive parameter. Notably, it has been shown that for MILPs with unique solutions, when
θ corresponds to the linear cost g, then the following holds [Berthet et al., 2020, Proposition 2.3]

f(x⋆(θ))− f(x⋆
σ(θ)) ≤ B′σ, (5.16)

for some B′ > 0. Furthermore, the corresponding solution x⋆
σ(θ) is differentiable with respect to

θ [Berthet et al., 2020, Proposition 2.2] and can be approximated with E[x⋆(θ + σZ)] (i.e., Zero
order estimate) or E[f(x⋆(θ + σZ))∇zν(Z)/σ] (i.e., First order estimate) where the distribution
must satisfy dµ(z) ∼ exp(−ν(z))dz with ν being twice differentiable. This strategy implies that
following the direction of the perturbed optimizers leads to a solution that is not too far from a
solution to the original problem. A temperature level σ essentially controls this distance.

The workaround Randomized Smoothing is relatively recent. Hence, its extensions from
MILPs towards different settings, such as QPs, are still ongoing. Furthermore, its applications
for control and robotics are relatively new [Le Lidec et al., 2021,Mensch and Blondel, 2018,Suh
et al., 2022,Montaut et al., 2023].

5.3.3 Other regularizations of the cost function

Practitioners studying the differentiation of the MILP cost function have also proposed to perturb
the cost function by adding another regularization function. We mention two types of techniques.

[Wilder et al., 2019, Blondel et al., 2020b, Martins and Astudillo, 2016] have proposed to
consider the following perturbed objective fλ(x; θ) def= f(x; θ)− λ∥x∥22 with λ > 0. Noting x⋆

λ(θ)
a minimizer of the new perturbed problem, it then holds that [Wilder et al., 2019, Theorem 2]

f(x⋆
λ(θ)) ≥ f(x⋆)− λD, (5.17)

where x⋆ is a solution of the original problem and D is the diameter of the feasible set. Furthermore,
x⋆

λ(θ) is differentiable w.r.t. θ almost everywhere [Wilder et al., 2019, Theorem 1].
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Another more generic way of regularizing f consists in adding an appropriate smooth convex
regularizer Ω, which should be typically +∞ if x is close to zero1. [Mandi and Guns, 2010]
proposes to consider for example the transformed objective fλ(x; θ) def= f(x; θ) − λ

∑n
i=1 ln(xi)

with λ > 0, which naturally fits to Interior Point methods. There are numerous other
possible choices, including the family of regularizers forming Fenchel-Young losses (e.g., the
Shanon entropy Ω(x) = −

∑n
i=1 xiln(xi)) [Blondel et al., 2020a].

1Remember that in standard form x ≥ 0 for linear programs.



Chapter6
Differentiable Optimization for QPs

Abstract. In this chapter, we present a unified approach to tackle the differentiability of both
feasible and infeasible QPs by notably introducing the notion of Extended Conservative
Jacobian. We propose efficient ways to compute it in both forward and backward automatic
differentiation modes and finally demonstrate how this method enables training a broader range
of QP layers. We notably illustrate on standard benchmarks that this technique performs better
than traditional approaches for solving some tasks. We also show that using standard learning
approaches, our QP layer formulation performs faster than current state-of-the-art QP layers
and is also numerically more robust.

This chapter is based on our work Leveraging augmented-Lagrangian techniques for differen-
tiating over infeasible quadratic programs in machine learning, with Fabian Schramm, Adrien
Taylor, and Justin Carpentier, submitted to International Conference on Learning Representa-
tions, 2024.
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6.1 Introduction
Incorporating differentiable optimization problems as layers within neural networks has recently
become practical and effective for solving certain machine learning tasks, see, for instance [Geng
et al., 2020, Amos and Kolter, 2017, Lee et al., 2019, Le Lidec et al., 2021, Donti et al., 2017,
de Avila Belbute-Peres et al., 2018,Amos et al., 2018,Bounou et al., 2021]. Such layers allow
capturing useful domain-specific knowledge or priors. Unlike conventional neural networks, where
the output of each layer is provided by a simple (explicit) function of its input, the input of an
optimization layer is the parameter of an optimization problem, and its output is a solution to
this problem. Figure 6.1 and Figure 6.2 provide two illustrative examples of a neural network
and a QP layer. Both layers have potentially fixed (in blue) and trained (in red) parameters.
The main difference is that the output of the feed-forward neural network has a closed-form
expression, whereas the output of the QP layer is the solution of a constrained QP. Finally, note
that extra parameters (i.e., zt and ht) are trained to ensure the quadratic program is always
well-posed during training.

 

Neural network

Parameters:
● trained: wt

● fixed: b

INPUT

x y*=tanh(wtx-b)

FORWARD 
PASS

y*

OUTPUT

LOSS TO MINIMIZE

L(y*)=||y*-ydesired||2

BACKWARD 
PASS

PARAMETER UPDATE

wt+1=wt-α

𝜕w 𝜕y* 𝜕w 
 𝜕L                  𝜕y* 𝜕L                  𝜕w 

 𝜕L                  

=

Figure 6.1: Example of a feed-forward neural network.

 

QP layer

Parameters:
● trained: Ct,zt,ht

● fixed: D

INPUT

x y*= argmin ||Dy-x||2
   y   

  s.t., Cty≤Ctzt+exp(ht) FORWARD 
PASS

y*

OUTPUT

LOSS TO MINIMIZE

L(y*)=||y*-ydesired||2

BACKWARD 
PASS

PARAMETERS UPDATE

zt+1=zt-α

ht+1=ht-α

Ct+1=Ct-α𝜕C 𝜕y* 𝜕C 
 𝜕L                  𝜕y* 𝜕L                  

=

𝜕z 𝜕y* 𝜕z 
 𝜕L                  𝜕y* 𝜕L                  

=

𝜕h 𝜕y* 𝜕h 
𝜕y* 𝜕L                  

=

𝜕C 
 𝜕L                  

𝜕z 
 𝜕L                  

𝜕h 
 𝜕L                   𝜕L                  

Figure 6.2: Example of a Quadratic Programming layer (with D nonsingular).
In this work, we focus on convex Quadratic Programming (QP) layers, a specific type of

optimization layer that offers a rich modeling power [Amos and Kolter, 2017, Section 3.2]. A
convex QP parameterized by θ is defined as follows

x⋆(θ) ∈ argmin
x∈Rn

{
f(x; θ) def= 1

2x⊤H(θ) x + x⊤g(θ)
}

s.t. C(θ) x ≤ u(θ),
(QP(θ))

where H(θ) ∈ Sn
+(R) is a real symmetric positive semi-definite matrix of Rn×n, g(θ) ∈ Rn,

C(θ) ∈ Rm×n and u(θ) ∈ Rm. n is the problem dimension, while m is the number of inequality
constraints. We will abusively denote H, g, C, and u without explicit dependence on θ when
this dependence is clear from the context or generates no ambiguity. In order to use QP(θ) as
a learning tool that can be trained with standard optimization techniques, we need to be able
to differentiate x⋆(θ) w.r.t. θ, which is challenging for a few reasons. First, there is usually no
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practical way to compute a closed-form for x⋆(θ), even when QP(θ) is well-defined. Second, even
when such an x⋆(θ) exists, there is no guarantee for it to be unique nor differentiable w.r.t. θ
(see, e.g., the assumptions of the implicit function theorem [Dontchev et al., 2009b, Theorem
1B.1]). Consequently, concurrent approaches are generally based on architectures enforcing the
satisfaction of some strong assumptions. In particular, to the best of our knowledge, previous
approaches enforce the primal feasibility of the layer during training, which generally requires
additional learning variables and limits the modeling power of those layers. For instance, as
in [Amos and Kolter, 2017], learning QP(θ) requires imposing its feasible set to be non-empty.
For imposing this while learning C, the authors also learn z0 ∈ Rn and s0 ∈ Rm

+ and u of the
form u = Cz0 + s0, thereby preventing, among others, u from being fixed independently of the
learning.

This work makes the following contributions:

• We propose a unified approach to tackle the differentiability of both feasible and infeasible
QPs. The main idea consists of extending the definition of x⋆(θ) to be either a solution
to QP(θ) when it is feasible or a solution of the closest feasible QP (in the least-square
sense) when it is not. By relying on the notion of a conservative Jacobian by [Bolte
et al., 2021, Bolte and Pauwels, 2020], we notably show that the KKT map G of this
extended problem is path differentiable w.r.t. θ and x⋆ (Section 6.2.2). In this context,
the Jacobian ∂x⋆(θ)

∂θ is defined as the least-square solution of the linear system formed by
applying the implicit function theorem to G (Section 6.2.3). We show that this definition
consistently covers the differentiability of feasible QPs as with the traditional implicit
differentiation [Amos and Kolter, 2017] when it is valid and with the least-square estimate
proposed by [Agrawal et al., 2019, Appendix B] otherwise.

• In Section 6.2.4 we provide an efficient way to compute the Jacobian ∂x⋆(θ)
∂θ in both forward

and backward automatic differentiation modes.

• In Section 6.3 we demonstrate how the approach enables dealing with possibly infeasi-
ble QP(θ), allowing to train a broader range of QP layers (e.g., learning QPs that are not
generically feasible during training). More precisely, we will show how training towards
feasibility at test time the QP layer provided in Figure 6.3.

Based on these developments, we provide QPLayer, an open-source implementation with
efficient forward and backward passes. It takes advantage, among others, of recent advances in
solving of QP problems to output in the forward pass the closest feasible QP solution in ℓ2-sense
as soon as the program is primal infeasible [Chiche and Gilbert, 2016]. Section 6.3 highlights for
different learning tasks the numerical robustness, accuracy, and speed of our approach against
other state-of-the-art methods.

6.2 The extended conservative Jacobian for convex QPs

This section introduces the main contribution of this work: an extended conservative Jacobian
for the solutions to QP(θ) allowing to simultaneously deal with feasible and infeasible QPs,
as provided in Section 6.2.2 and Section 6.2.3. Section 6.2.4 proposes efficient algorithms
for computing them in forward and backward modes. For exposition purposes, Section 6.3.1
illustrates the concepts on a few simple examples.
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QP layer

Parameters:
● trained: At

INPUT

x y*= argmin x⋅y
   y   

  s.t., Atx=1 and x≥0. FORWARD 
PASS

y*

OUTPUT

Figure 6.3: A Linear Programming layer. Nothing guarantees during training that the constrained vector
of 1 lies in the range space of the trained matrix At. Our approach enables to train At such that at test
time the LP is feasible.

6.2.1 Problem formulation

For differentiating QPs, we solve a hierarchic problem QP-H(θ) which is equivalent to QP(θ)
when QP(θ) is primal feasible (i.e., there exists x s.t. C(θ)x ≤ u(θ))

s⋆(θ) = arg min
s∈Rni

1
2∥s∥

2
2

s.t. x⋆(θ), z⋆(θ) ∈ arg min
x∈Rn

max
z∈Rni

+

L(x, z, s; θ), (QP-H(θ))

with L(x, z, s; θ) def= 1
2x⊤H(θ) x+x⊤g(θ)+z⊤(C(θ)x−u(θ)−s) (namely the Lagrangian of QP(θ)

augmented with a slack variable s). The following assumption is necessary and sufficient for
guaranteeing QP-H(θ) to have a solution. In this situation, QP-H(θ) is therefore well-posed and
s⋆ is referred to as the optimal shift. It provides a measure of the distance of QP(θ) to be primal
infeasible in ℓ2-sense (hence s⋆ = 0 iff QP(θ) is feasible).

Assumption 3. H(θ) is symmetric positive definite in the direction of g(θ) or g(θ) is orthogonal
to the recession cone of QP(θ), i.e., g(θ) ⊥ C∞(θ) def= {y ∈ Rn|C(θ)[x + τy] ≤ u(θ) s.t. C(θ)x ≤
u(θ), τ ≥ 0}.

The existence of a solution (x⋆(θ), z⋆(θ), s⋆(θ)) is also equivalent to the dual of QP(θ) having
a non-empty domain (i.e., being proper), see [Chiche and Gilbert, 2016, Assumption 2.6 and
Proposition 2.5]). So, the approach proposed here allows differentiating through dual feasible
convex QPs.

6.2.2 The closest feasible QP

In what follows, we deal with QP-H(θ) via a nonlinear map G:

G(x, z, t; θ) :=


H(θ)x + g(θ) + C(θ)⊤z

C(θ)x− u(θ)− t
[[t]− + z]+ − z

C(θ)⊤[t]+

 , (G)
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where [.]+ and [.]− respectively correspond to component-wise projections on the non-negative
and non-positive orthants. The following lemma guarantees solutions to QP-H(θ) to be zeros
of G (see proof in Section 6.4.1).

Lemma 5. Let H(θ) ∈ Sn
+(R), g(θ) ∈ Rn, C(θ) ∈ Rni×n and u(θ) ∈ Rni be satisfying Assump-

tion 3. It holds that (x⋆, z⋆, s⋆) solves QP-H(θ) iff there exists t⋆ ∈ Rni s.t. G(x⋆, z⋆, t⋆; θ) = 0
and s⋆ = [t⋆]+.

6.2.3 The extended conservative Jacobian

For differentiating through G, we rely on the notion of extended conservative Jacobian (ECJ). As
provided by the following lemma, the nonlinear map G(x, z, t; θ) is path differentiable (see [Bolte
and Pauwels, 2020, Definition 3]) w.r.t. x, z, t and also w.r.t. θ under the assumption that H(θ),
g(θ), C(θ) and u(θ) are differentiable w.r.t. θ. This lemma is proved in Section 6.4.2.

Lemma 6. G is path differentiable w.r.t. x⋆, z⋆ and t⋆. Furthermore, if H(θ), g(θ), C(θ) and
u(θ) are differentiable w.r.t. θ, then G is path differentiable w.r.t. θ.

Definition 6. Let H(θ), g(θ), C(θ) and u(θ) be differentiable w.r.t. θ and satisfying Assumption 3.
Let v⋆ = (x⋆, z⋆, t⋆) ∈ Rn × Rni

+ × Rni s.t. G(x⋆, z⋆, t⋆; θ) = 0. We refer to the ECJs of x⋆, z⋆

and t⋆, respectively denoted by ∂x⋆

∂θ ,∂z⋆

∂θ and ∂t⋆

∂θ , as solutions of the following problem

(
∂x⋆

∂θ
,
∂z⋆

∂θ
,
∂t⋆

∂θ

)
∈ arg min

w

∥∥∥∥∂G(x⋆, z⋆, t⋆; θ)
∂v⋆

w + ∂G(x⋆, z⋆, t⋆; θ)
∂θ

∥∥∥∥2

2
. (6.1)

Furthermore, we refer to an ECJ of s⋆ = [t⋆]+, denoted by ∂s⋆

∂θ , any element satisfying Π∂t⋆

∂θ ∈
∂s⋆

∂θ ,
with Π ∈ ∂([.]+)(t⋆) a subgradient of the positive orthant evaluated in t⋆.

As shown in the next section the ECJs match the definitions of standard Jacobians under
standard assumptions guaranteeing differentiability (when the QP is feasible), as provided
by [Amos and Kolter, 2017,Dontchev et al., 2009b]. When the QP is feasible but not differentiable,
the ECJ corresponds to a least-square approximation specialized for QPs. A similar practical
least-square estimate was proposed in [Agrawal et al., 2019, Appendix B] for differentiating
primal solutions of second-order cones (SOCs)1. [Blondel et al., 2022, Section 2.1] proposed a
similar estimate.

6.2.4 Deriving an extended conservative Jacobian

This section derives an ECJ and incorporates it in a backpropagation algorithm. It also shows
how to efficiently compute this ECJ under primal feasibility.

General case: dealing with both feasible and infeasible QPs

In the following, we provide forward and backward pass algorithms to compute ECJs for both
feasible and infeasible QPs.

Forward pass: Let H(θ), g(θ), C(θ) and u(θ) be differentiable w.r.t. θ and satisfying Assump-
tion 3, and x⋆, z⋆, t⋆ s.t. G(x⋆, z⋆, t⋆; θ) = 0. We show in Section 6.4.3 that we can efficiently

1More precisely, [Agrawal et al., 2019, Appendix B] relies on a series of assumptions allowing to simplify the
computations. In particular, they assume that ∂z⋆

∂θ
= 0 and ∂t⋆

∂θ
= 0, where t⋆ is a slack variable.
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derive ECJs of x⋆, z⋆ and t⋆ by solving the following QP using an augmented Lagrangian-based
algorithm [Rockafellar, 1976a]

∂x⋆

∂θ
,
∂z⋆

∂θ
,
∂t⋆

∂θ
∈ arg min

∂x
∂θ

, ∂z
∂θ

, ∂t
∂θ

∥∥∥∥∥∥∥∥∥∥


H C⊤ 0
C 0 −I
0 Π1 − I Π1Π2
0 0 C⊤(I −Π2)




∂x
∂θ
∂z
∂θ
∂t
∂θ

+


∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

∂C
∂θ x⋆ − ∂u

∂θ
0

∂C⊤

∂θ [t⋆]+


∥∥∥∥∥∥∥∥∥∥

2

2

, (6.2)

where Π1 and Π2 are binary diagonal matrices respectively corresponding to the subdifferentials
∂([.]+)([t⋆]− + z⋆) and ∂([.]−)(t⋆), with the following specific choices in zeros

(Π1)i = 0 when [t⋆
i ]− + z⋆

i = 0, (Π2)i = 1 when t⋆
i = 0. (6.3)

Furthermore, an ECJ of s⋆ can be obtained via (1−Π2)∂t⋆

∂θ ∈
∂s⋆

∂θ .
As s⋆ is a direct output of an augmented Lagrangian-based algorithm [Chiche and Gilbert,

2016], in what follows, we work with s⋆ instead of t⋆.

Backward pass: Let h : Rn × (Rni)2 → R be a differentiable function, and let H(θ), g(θ),
C(θ) and u(θ) be differentiable w.r.t. θ and satisfying Assumption 3. Then, denoting L(θ) ≜
h(x⋆(θ), z⋆(θ), s⋆(θ)) and following the methodology provided in [Amos and Kolter, 2017, Section
3], we show in Section 6.4.3 that under assumptions of ?? a conservative Jacobian ∂L

∂θ can be
obtained from the usual chain rule:

∂L
∂θ

= (b⋆
1)⊤ ∂H

∂θ
x⋆ + (b⋆

1)⊤ ∂g

∂θ
+ (b⋆

2)⊤ ∂C

∂θ
x⋆ + (z⋆)⊤ ∂C

∂θ
b⋆

1 + (s⋆)⊤ ∂C

∂θ
b⋆

4 − (b⋆
2)⊤ ∂u

∂θ
, (6.4)

where b⋆
1, b⋆

2, b⋆
3 and b⋆

4 are solutions of the linear system

H C⊤ 0 0
C 0 (I −Π1) 0
0 −I −Π1Π2 (1−Π2)C




b⋆
1

b⋆
2

b⋆
3

b⋆
4

 = −


∂L
∂x⋆

∂L
∂z⋆

∂L
∂s⋆

 . (6.5)

If not, the methodology proposed in [Amos and Kolter, 2017, Section 3] cannot be used. Hence,
ECJs of x⋆, z⋆ and s⋆ are derived using forward mode and ∂L

∂θ is recovered from

∂L
∂θ

= ∂L
∂x⋆

⊤ ∂x⋆

∂θ
+ ∂L

∂z⋆

⊤ ∂z⋆

∂θ
+ ∂L

∂s⋆

⊤ ∂s⋆

∂θ
. (6.6)

In practice, we provide a feasibility tolerance that can be set by the user and above which (6.5) is
considered not accurate enough or infeasible. In such cases, the forward mode is used internally.

Exploiting primal feasibility of the QP

In this section, we exploit feasibility of the QP for simplifying the computations. First, for the
forward pass, the QP needs only to be feasible for the value of θ under consideration. For the
backward pass, we exploit the standard assumption (see [Amos and Kolter, 2017]) of the QP
being constructively feasible for all values of θ (which is of course restrictive, but which can be
exploited for efficiency).
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Forward pass: When QP(θ) is feasible and H(θ), g(θ), C(θ) and u(θ) are differentiable w.r.t. θ
and satisfy Assumption 3, we show in Lemma 6.4.3 that ECJs can be obtained as a solution to
the simpler:

∂x⋆

∂θ
,
∂z⋆

∂θ
∈ arg min

∂x
∂θ

, ∂z
∂θ

∥∥∥∥∥∥
[

H C⊤
Π1√
1+Π1

C Π1 − I

] [
∂x
∂θ
∂z
∂θ

]
+

∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

Π1√
1+Π1

(
∂C
∂θ x⋆ − ∂u

∂θ

)∥∥∥∥∥∥
2

2

,

∂t⋆

∂θ
= (I + Π1)−1

(
C

∂x⋆

∂θ
+ ∂C

∂θ
x⋆ − ∂u

∂θ

)
,

(6.7)

where Π1 is a binary diagonal matrices representing the subdifferential ∂[.]+(Cx⋆ − u + z⋆) with
the following specific choice:

(Π1)i = 0 when Cix
⋆ − ui + z⋆

i = 0. (6.8)

The following lemma (see proof in Equation 6.4.3) guarantees that, under standard assumptions,
solutions to (6.7) correspond to standard Jacobians (see, e.g., [Amos and Kolter, 2017]).

Lemma 7. If QP(θ) is feasible and H(θ), g(θ), C(θ) and u(θ) are differentiable w.r.t. θ and
satisfy Assumption 3, and if the KKT matrix of active constraints is nonsingular and x⋆, z⋆ satisfy
strict complementarity, then the ECJs matches the standard Jacobian, i.e., ∂x⋆(θ)

∂θ = ∇x⋆(θ) and
∂z⋆(θ)

∂θ = ∇z⋆(θ).

Backward pass: If QP(θ) is by construction primal feasible for any θ, then for any θ, s⋆(θ) = 0.
We can exploit this result for considering simpler losses not depending of s⋆(θ). More precisely,
let h : Rn × (Rni) → R be a differentiable function, and let H(θ), g(θ), C(θ) and u(θ) be
differentiable w.r.t. θ and satisfying Assumption 3. Then, denoting L(θ) ≜ h(x⋆(θ), z⋆(θ)), we
show in Equation 6.4.3 that when assumptions of Lemma 7 hold the backward pass can be
evaluated by solving the following linear system[

H C⊤
J

CJ 0

] [
b⋆

x

b⋆
zJ

]
= −

[
∂L
∂x⋆

∂L
∂z⋆

J

]
, b⋆

zJc = ∂L
∂z⋆

Jc

, (6.9)

where J is the set of constraints for which (Π1)i = 1 and Jc the one for which (Π1)i = 0. ∂L
∂θ is

then retrieved from the chain rule
∂L
∂θ

= (b⋆
x)⊤ ∂H

∂θ
x⋆ + (b⋆

x)⊤ ∂g

∂θ
+ (Π1b⋆

z)⊤ ∂C

∂θ
x⋆ + (z⋆)⊤ ∂C

∂θ
b⋆

x − (Π1b⋆
z)⊤ ∂u

∂θ
. (6.10)

Note that the assumptions of Lemma 7 are not necessarily met. Therefore, if (6.9) is
found to be infeasible we provide an option to use forward mode in the backward pass as in
the generic case (see Equation 6.2.4). Such infeasibility can be detected easily using iterative
refinement [Parikh and Boyd, 2014, Section 4.1.2]) as it converges to the least-square solution
of (6.9) in the infeasible case (see [Güler, 1991, Theorem 2.3]).

6.2.5 Future work and potential improvements

Before moving to the experiments, let us mention a few potential directions for future work and
improvements in our approach. There remain a few gaps in the theoretical foundations of our
methodology, which we believe should be handled in the future. Indeed, we have not proved
that we could apply the chain rule to ECJs in the general case in the spirit of CJs (see [Bolte
et al., 2021]). Also, it should be confirmed that ECJ indeed reduces to CJ under relatively weak
assumptions. While those problems are present in most frameworks [Agrawal et al., 2019, Section
B], [Blondel et al., 2022, Section 2.1], using the least-square estimate provides good practical
results when non-differentiability occurs.
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6.3 Experiments

Our forward and backward mode differentiation of convex QP layers has been implemented
in C++. We refer to it as QPLayer in what follows. Our code leverages the primal-dual
augmented Lagrangian solver ProxQP, as its internal QP solver. This section illustrates through
different classic learning tasks that QPLayer can drive towards feasibility infeasible QPs. We
show in an example that it enables learning new types of layers with an improved prediction
rate. Then we illustrate that when using standard layers (enforcing feasibility), QPLayer is
also faster than other state-of-the-art approaches. QPLayer further allows also relaxing primal
feasibility constraints, thereby enabling the training of simplified layers. We finally also show in
Section 6.3.4 that QPLayer can be used for solving tasks with high learning rates.

6.3.1 Pedagogical examples of parametric QPs

A few numerical examples illustrate the concept of ECJ in different simple scenarios. The first
example corresponds to a strictly convex parametric QP which can be either feasible or infeasible.
In this example, a linear constraint depends on a parameter θ. Depending on the value of this
parameter, the QP can either be feasible or infeasible.

The second example is a strictly convex QP with a parameterized linear cost. This problem
is always feasible.

The last example is a parametric LP with possibly multiple solutions. For appropriate values
of the parameters, the LP is feasible but not differentiable.

Strictly convex QP (parameterized constraints)

Consider the following strictly convex QP parameterized by a scalar value θ

x⋆(θ) = arg min
x1,x2∈R2

1
2(x2

1 + x2
2)

s.t. θ ≤ x1 + x2 ≤ 1.55,

1.5 ≤ 2x1 + x2 ≤ 1.55

(6.11)

Notice that for θ > θlimit ≜ 1.55, the QP becomes primal infeasible. We use gradient descent to
minimize two scalar losses L1(θ) = x⋆

1(θ) and L2(θ) = x⋆
2(θ), starting from a predefined value

θ0. More precisely we have launched gradient descent for 40 steps with a learning rate 5× 10−4

starting from θ0 = 1.54. Figure 6.4 illustrates the results by showing the iterates of gradient
descent for minimizing x⋆

1(θ) (as well as the search direction—minus the ECJs). By doing so θ
increases and eventually becomes larger than θlimit.

Figure 6.5 reports a similar experiment for when minimizing x⋆
2(θ).
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Figure 6.4: 40 steps of gradient descent for minimizing x⋆
1(θ) starting from θ0 = 1.54. When θ > 1.55,

(6.11) is differentiated though infeasible.
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Figure 6.5: 40 steps of gradient descent for minimizing x⋆
2(θ) starting from θ0 = 1.54. The QPs remain

feasible.
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Strictly convex QP (parameterized objective)

Consider the following strictly convex QP parametrized by a scalar value θ

x⋆(θ) = arg min
x1,x2∈R2

1
2

∥∥∥∥∥
[
x1
x2

]
+
[

θ
−2

]∥∥∥∥∥
2

2
s.t. − 300 ≤ x1 + x2 ≤ 400,

−200 ≤ 2x1 + x2 ≤ 500

(6.12)

We use gradient descent to minimize the loss L1(θ) = x⋆
1(θ). More precisely, we run 40 iterations

of gradient descent with learning rate 5× 10−4 starting from θ0 = 1.54, as reported by Figure 6.6.
As expected, we see that x⋆

1(θ) = −θ, hence increasing θ decreases x⋆
1(θ).
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Figure 6.6: Gradient descent for minimizing x⋆
1(θ) (solution to (6.12)) starting from θ0 = −1.5.

Parameterized linear program

Consider the following LP parameterized by a scalar parameter θ > 0

x⋆(θ) ∈ arg min
x1,x2∈R2

x1 + x2

s.t. θ ≤ x1 + x2,

0 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 1.

(6.13)

Note that this LP is always well-defined for any θ since the linear cost is orthogonal to the
recession cone (which is empty), thereby satisfying the technical requirements from Assumption 3.
We use gradient descent for minimizing two scalar losses L1(θ) = x⋆

1(θ) and L2(θ) = x⋆
2(θ).
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Feasible case (θ ≤ 2). For any θ ∈]0, 2], there are infinitely many solutions to (6.13) which
are defined by the segment equation

x⋆
1 + x⋆

2 = θ,

0 ≤ x⋆
1 ≤ 1,

0 ≤ x⋆
2 ≤ 1.

We can see in Figure 6.7 and Figure 6.8 that the forward pass chooses as solution x⋆
1 = x⋆

2 = θ
2 .

Hence, only the constraint θ ≤ x1 + x2 is active. Following the formalism from Section 6.2.1 we
have

C =


−1 −1
1 0
−1 0
0 1
0 −1

 , u =


−θ
1
0
1
0

 .

The ECJs of L1 and L2 w.r.t θ are the solutions to(b⋆
x)1

(b⋆
x)2
b⋆

z

 ∈ arg min
bx,bz

∥∥∥∥∥∥∥
 0 0 −1

0 0 −1
−1 −1 0


(bx)1

(bx)2
bz

+

1
0
0


∥∥∥∥∥∥∥

2

2

,

(d⋆
x)1

(d⋆
x)2

d⋆
z

 ∈ arg min
dx,dz

∥∥∥∥∥∥∥
 0 0 −1

0 0 −1
−1 −1 0


(dx)1

(dx)2
dz

+

0
1
0


∥∥∥∥∥∥∥

2

2

.

As the corresponding linear systems involved within the ℓ2 norm are infeasible, the least square
estimates do not correspond to solutions to the linear system. That is, the corresponding
least-square solutions are respectively the solutions of the following projected linear systems:1 1 0

1 1 0
0 0 2


(b⋆

x)1
(b⋆

x)2
b⋆

z

 =

0
0
1

 ,

1 1 0
1 1 0
0 0 2


(d⋆

x)1
(d⋆

x)2
d⋆

z

 =

0
0
1

 ,

which leads to ∂L1
∂θ = ∂L2

∂θ = b⋆
z = d⋆

z = 1
2 . Figure 6.7 and Figure 6.8 show that those directions

allow minimizing L1 and L2 through gradient descent.

Infeasible case (θ > 2). For any θ > 2, the LP is infeasible. The corresponding ECJs are the
least-square solutions to

arg min
b1,b2,b3,b4

∥

0 C⊤ 0 0
C 0 (I −Π1) 0
0 −I −Π1Π2 (1−Π2)C




b1
b2
b3
b4

+

 δLi
δx
0
0

 ∥22 for i ∈ {1, 2},

with P1 =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

 and P2 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

. The linear system within the ℓ2 norm

is feasible and QPLayer outputs as ECJs ∂L1
∂θ = ∂L2

∂θ = 1
3 . Figure 6.9 and Figure 6.10 show that

following such directions allows using gradient descent for minimizing L1 and L2.
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Figure 6.7: 40 iterations of gradient descent for minimizing x⋆
1(θ) for the problem (6.13).
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Figure 6.8: 40 iterations of gradient descent for minimizing x⋆
2(θ) for the problem (6.13).
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Figure 6.9: 40 steps of gradient descent applied to minimize x⋆
1(θ) starting from θ0 = 2.2, when considering

the infeasible LP defined by (6.13).
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Figure 6.10: 40 steps of gradient descent applied to minimize x⋆
2(θ) starting from θ0 = 2.2, when considering

the infeasible LP defined by (6.13).
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6.3.2 Learning capabilities

Differentiable optimization for neural network layers has shown great representational power
for learning problems that are fundamentally rooted in optimization. The Sudoku problem
is one such problem, which can naturally be cast as a mixed integer linear program (MILP).
For the Sudoku, OptNet recently showed better robustness and prediction accuracy results
than traditional neural networks [Amos and Kolter, 2017, Section 4.4]. This section shows that
QPLayer generalizes even better by exploiting the fact that it allows learning LPs (and not
only QPs). Further, the ability of QPLayer to deal with possibly primal infeasible problems
during the learning process appears to be key.

Learning linear programs

The Sudoku problem is detailed in [Amos and Kolter, 2017, Section 4.4]. We reproduce those
experiments with OptNet and CvxpyLayer, while letting QPLayer learn linear programs
(LPs) instead of strictly convex QPs. More precisely, OptNet and CvxpyLayer train models
that are structurally feasible by learning an extra parameter z0 (this layer is detailed in Fig-
ure 6.11). QPLayer enforces structural feasibility without considering the quadratic cost (i.e.,
it learns an LP).

Forward passQP layer

input

Backward pass

Figure 6.11: Strictly convex QP layer (as in OptNet [Amos and Kolter, 2017]). The constraint matrix
and an extra variable z0 are learned in order to be sure that the QP is always primal feasible (structural
feasibility).

OptNet, CvxpyLayer, and QPLayer were trained using Adam with a batch of size 150
and a learning rate of 0.05 to minimize an MSE loss on the dataset created by [Amos and Kolter,
2017]. The dataset contains 9000 training puzzles and 1000 puzzles for testing. First, Figure 6.12
shows that QPLayer minimizes the training and test loss without ending up over-fitting to
the training data, contrary to OptNet and CvxpyLayer which appears to saturate. Second,
Figure 6.13 shows that QPLayer achieves significantly more accurate and robust training and
test error predictions than OptNet and CvxpyLayer.

Handling primal infeasibility

As outlined in Section 6.3.2, forcing primal feasibility while learning is a common algorithmic
strategy. For the Sudoku problems, those techniques enforcing primal feasibility typically involve
neglecting a linear equality constraint Ax = 1 (we learn A) which corresponds to Sudoku rules.
As shown in Figure 6.16, this means that the learning procedures do not respect the Sudoku
rule constraint (see green and orange dashed lines—labeled "QPLayer; Ax = 1 violation" and
"OptNet; Ax = 1 violation"). In the end, neglecting this constraint ultimately leads to learning
a constraint matrix that is inconsistent with the Sudoku rules. Relaxing the primal feasibility
imposed by differentiation procedures of previous solvers thereby appears to be key.
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Figure 6.12: Test and training MSE losses of QPLayer, CvxpyLayer and OptNet layers.
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Figure 6.13: Test and training prediction errors of QPLayer, CvxpyLayer, and OptNet over 1000 and
9000 puzzles.QPLayer can learn LPs (which appear more appropriate), whereas OptNet is restricted to
strictly convex QPs.
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Forward passQP layer

input

Backward pass

Figure 6.14: An LP layer (as allowed by QPLayer) allows for more flexibility in the problem to be learned
(only the constraint matrix A is learned). The optimal shift s∗ is a new output variable minimized in the
loss, in order to learn at the end a feasible LP layer.

By incorporating a potential optimal shift s⋆ in its formulation (as exposed in Section 6.2.1),
QPLayer allows dealing with infeasible problems. Numerical performances are reported in Fig-
ure 6.15 and Figure 6.16. It is apparent that the dark green curve labeled "QPLayer-learn A;
Ax = 1 violation" converges after the end of the first epoch towards a model satisfying Sudoku
rules. It also converges slightly faster towards a regime without any prediction errors. The steeper
slope observed in the graph suggests that it might be worthwhile to train a layer that more
accurately adheres to the Sudoku rules, as this could potentially lead to faster puzzle-solving and
more interpretable outcomes. For comparison, the gray curves correspond to results obtained by
training a strictly convex QP layer with relaxed primal feasibility constraint (labeled "OptNet-
learn A; Ax = 1 violation) using OptNet. As expected, it fails to satisfy the primal feasibility
constraint (i.e., the black dashed curve value is around 10) and displays a worse prediction error.

6.3.3 Timing benchmarks on standard learning models

Benchmark setup. In the first set of experiments (see Section 6.3.3), QPLayer is compared
to OptNet, CvxpyLayer, JaxOpt, and Alt-Diff. For all the other experiments, QPLayer is
benchmarked only against approaches available within the PyTorch framework (i.e., OptNet
and CvxpyLayer2). The experiments were conducted using all threads of an Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz. The benchmark API will be released upon acceptance of this work.
It was inspired by https://github.com/locuslab/optnet and has been extended to cover all
our experiments. It should be noted that all the benchmarks were obtained on CPU whereas we
plan to release a GPU extension of our techniques in future work.

In this section, we report our numerical results and compare them against state-of-the-art
frameworks on a set of standard experiments. We outline detailed timings for differentiating
solutions on a set of different QPs. First, Table 6.1 shows the results for a few randomly generated
QPs. Second, Table 6.2 reports the average time spent in the differentiation procedure on four
different learning tasks.

Random QPs

In this first set of experiments, we generated random QPs with 100 variables, 50 equality, and 50
inequality constraints. We solve and backpropagate through all those QPs for different forward
pass accuracies. We then average the results over 5 trails and report the timings in the spirit
of [Sun et al., 2022].

For a batch size of 100, Table 6.1 shows that QPLayer is almost 4 times faster than OptNet
(the second fastest approach). We can see similar performance for a batch size of 1 (see Table 6.3

2Alt-Diff exhibited too slow performances for a fair and reasonable comparison. Note that [Sun et al., 2022]
have not yet proposed an Alt-Diff layer deriving all QP Jacobians. Therefore, we have included in our benchmark
an open-source implementation of Alt-Diff based on their work.

https://github.com/locuslab/optnet
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Figure 6.15: Test MSE loss of QPLayer, OptNet, QPLayer-learn A, and OptNet-learn A specialized
for learning A. It includes Sudoku Ax = 1 violation.
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Figure 6.16: Test prediction errors over 1000 puzzles of OptNet, QPLayer, QPLayer-learn A and
OptNet-learn A specialized for learning A. Contrary to OptNet, QPLayer can be specialized to learn
models satisfying specific linear constraints.
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in the appendix). We observe that the speed gain is mostly due to the forward pass speed-up,
enabled by the use of ProxQP and thread parallelization. It is also confirmed by Table 6.4, which
reproduces in the appendix the serial forward timing benchmark proposed in [Amos and Kolter,
2017, Section 4.1]. It exhibits from 5 to 9 times faster computation times.

Learning tasks

For this second set of experiments, we report the numerical results obtained on 4 traditional
learning tasks (namely MNIST classification, signal denoising, Sudoku solving and cart-pole
experiment). For all experiments, we report the average (over all epochs) time spent in the
forward and backward passes. Table 6.2 reports that QPLayer is 3 to 10 times faster than the
second fastest approach (i.e., 3 times faster on the classification task, 4 times faster on the Sudoku,
about 10 times faster for the denoising and 7 times faster for the cart-pole experiments). In all
cases, the test loss incurred using QPLayer is either similar (for the denoising and cart-pole
tasks) or far better than its competitor layers (about 2 times smaller and 3 orders of magnitudes
better for the classification and Sudoku experiments).

More precisely, the first three experiments reproduce the ones originally described in [Amos
and Kolter, 2017, Sections 4.2 to 4.4]. A complete description of the cart-pole swing-up task
is detailed in Section 6.4.5. These tasks involve learning convex feasible QPs using Adam
optimizer [Kingma and Ba, 2014]. The first three experiments are run with the default batch sizes
and the number of epochs fixed by the original authors (i.e., batch size equals 64 for classification,
150 for denoising and Sudoku tasks; 30 epochs for classification, and 20 for denoising and Sudoku
tasks). We run the cart-pole example with batch size 1 for 800 epochs. For the first three
experiments, we use the same QP layer models as [Amos and Kolter, 2017], except that we
have changed the backends for executing the forward and backward passes (using either Qpth,
QPLayer3 or CvxpyLayer). Finally, we have used the following learning rates for running
the benchmarks: 10−3 for classification, 10−5 for denoising, 5× 10−2 for Sudoku, and 10−1 for
cart-pole tasks.

3Two differences should be noted: QPLayer learns an LP for the Sudoku experiment. We have not imposed
zero Hessian for the CvxpyLayer even if it could learn it, as it did display worse results. Furthermore, for the
denoising experiment, QPLayer learns the lower and upper bounds simultaneously.
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Forward tolerance ϵ 10−1 10−2 10−3

Forward (ms) 72.43 (±7.28) 71.89 (±3.0) 72.12 (±4.21)
Backward (ms) 18.14 (±1.01) 18.03 (±0.17) 18.12 (±0.37)
QPLayer total (ms) 90.57 89.92 90.24

Forward (ms) 340.62 (±7.06) 348.68 (±3.51) 349.44 (±2.44)
Backward (ms) 6.39 (±0.16) 6.61 (±0.41) 6.66 (±0.38)
OptNet total (ms) 347.01 355.29 356.10

Forward (ms) 123.35 (±13.70) 196.75 (±38.13) 281.54 (±64.18)
Backward (ms) 546.91 (±55.58) 622.45 (±66.63) 723.34 (±66.26)
JaxOpt total (ms) 670.16 819.20 1004.88

Forward (ms) 1.16(±0.038)×103 1.19 (±0.015)×103 1.24 (±0.017)×103

Backward (ms) 187.52(±8.59) 187.74 (±11.54) 197.18 (±7.99)
CvxpyLayer total (ms) 1.35×103 1.38×103 1.43×103

Forward (ms) Time limit Time limit Time limit
Backward (ms) Time limit Time limit Time limit
Alt-Diff total (ms) Time limit Time limit Time limit

Table 6.1: Timings for deriving all Jacobians of random QPs with different forward pass accuracies and
batch size 100.

Learning Tasks QPLayer OptNet CvxpyLayer

cart-pole
Forward (ms) 55.20 (±6.93) 615.84 (±16.15) 629.70 (±30.42)
Backward (ms) 39.27 (±2.17) 61.26 (±2.84) 101.88 (±1.11)
Final test loss 0.02556 0.02604 0.02566

Sudoku
Forward (ms) 87.39 (±16.69) 454.48 (±22.22) 772.77 (±33.89)
Backward (ms) 20.80 (±1.70) 8.07 (±0.42) 192.99 (±9.81)
Final test loss 2.31×10−7 0.0017 0.389

denoising
Forward (ms) 247.89 (±17.03) 2827.48 (±618.78) Error
Backward (ms) 52.99 (±2.75) 40.57 (±2.98) Error
Final test loss 3281.84 3529.2029 Error

classification
Forward (ms) 26.77(±3.63) 102.62 (±18.23) Error
Backward (ms) 11.12 (±3.01) 16.58 (±12.05) Error
Final test loss 0.1363 0.3264 Error

Table 6.2: Timings and final loss of 4 learning tasks. CvxpyLayer errors arise due to failures in filling the
disciplined parametrized programming (DPP) form of the quadratic cost.

6.3.4 Training with large learning rates

In this section, we assess the numerical robustness of QPLayer on traditional learning tasks by
demonstrating that it can be trained with larger learning rates than other approaches, potentially
resulting in improved basins of attraction.

More precisely, we ran the MNIST classification and denoising tasks described in Section 6.3.3
with SGD and larger learning rates and reported the corresponding results. We measured the
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Forward tolerance ϵ 10−1 10−2 10−3

Forward (ms) 1.30 (±0.17) 1.42 (±0.19) 1.55 (±0.20)
Backward (ms) 0.77 (±0.01) 0.70 (±0.02) 0.71 (±0.02)
QPLayer total (ms) 2.07 2.12 2.26

Forward (ms) 6.93 (±0.82) 6.85 (±0.05) 7.49 (±0.04)
Backward (ms) 0.75 (±12) 0.70 (±0.01) 0.70 (±0.01)
OptNet total (ms) 7.68 7.55 8.19

Forward (ms) 7.99 (±0.93) 12.82 (±2.67) 18.82 (±4.31)
Backward (ms) 24.71 (±2.53) 30.47 (±2.71) 36.43 (±3.93)
JaxOpt total (ms) 32.70 43.29 55.25

Forward (ms) 411.20 (±3.90) 415.94 (±2.63) 422.28 (±2.65)
Backward (ms) 6.13 (±0.02) 6.34 (±0.33) 6.26 (±0.06)
CvxpyLayer total (ms) 417.33 422.24 428.54

Forward (ms) 6.00 (±0.85)×103 38.66 (±7.11)×103 114.20 (±31.48)×103

Backward (ms) 0.99 (±0.21) 0.98 (±0.13) 1.05 (±0.14)
Alt-Diff total (ms) 6.00×103 36.66×103 114.20×103

Table 6.3: Averaged timings for the forward and backward passes when computing all Jacobians of randomly
generated feasible QPs (with 100 primal variables, 50 equality constraints and 50 inequality constraints)
considering different forward pass accuracies. The batch size is 1. QPLayer has the best total timings for
all accuracies.

QP and Batch sizes QPLayer (ms) OptNet (ms) CvxpyLayer (ms)
Batch = 1, n = 100, ne = 0, ni = 50 0.88 (±0.06) 8.01 (±0.89) 334.06 (±7.83)
Batch = 1, n = 100, ne = 50, ni = 50 1.09 (±0.10) 8.35 (±0.67) 406.18 (±1.44)
Batch = 1, n = 100, ne = 0, ni = 100 1.22 (±0.08) 7.62 (±0.32) 422.59 (±4.34)
Batch = 1, n = 100, ne = 50, ni = 100 1.75 (±0.17) 13.95 (±2.03) 522.80 (±3.96)
Batch = 1, n = 100, ne = 100, ni = 50 1.26 (±0.14) 16.77 (±3.41) 521.18 (±16.15)
Batch = 1, n = 100, ne = 100, ni = 100 1.45 (±0.28) 18.33 (±5.35) 621.25 (±9.67)

Batch = 64, n = 100, ne = 0, ni = 50 30.16 (±5.51) 173.95 (±12.82) 771.49 (±59.74)
Batch = 64, n = 100, ne = 50, ni = 50 48.60 (±9.19) 183.84 (±9.99) 818.75 (±5.42)
Batch = 64, n = 100, ne = 0, ni = 100 44.68 (±5.95) 176.88 (±2.30) 820.85 (±12.38)
Batch = 64, n = 100, ne = 50, ni = 100 55.77 (±6.38) 243.15 (±27.86) 1126.99 (±34.33)
Batch = 64, n = 100, ne = 100, ni = 50 51.66 (±8.51) 231.11 (±13.75) 1177.89 (±132.99)
Batch = 64, n = 100, ne = 100, ni = 100 62.52 (±7.84) 276.18 (±31.29) 1314.47 (±69.60)

Batch = 128, n = 100, ne = 0, ni = 50 62.94 (±9.52) 620.91 (±3.52) 1202.61 (±88.32)
Batch = 128, n = 100, ne = 50, ni = 50 78.01 (±4.06) 667.55 (±5.86) 1295.50 (±24.63)
Batch = 128, n = 100, ne = 0, ni = 100 89.48 (±7.09) 653.32 (±5.54) 1267.83 (±30.85)
Batch = 128, n = 100, ne = 50, ni = 100 111.01 (±8.21) 774.08 (±20.90) 1739.41 (±70.53)
Batch = 128, n = 100, ne = 100, ni = 50 96.23 (±9.47) 811.44 (±25.29) 1896.52 (±284.89)
Batch = 128, n = 100, ne = 100, ni = 100 119.13 (±10.17) 934.26 (±87.79) 2059.44 (±147.77)

Table 6.4: Timing benchmarks of different backends used for solving a forward pass for different batch
sizes. ne stands for the number of equality constraints.
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final test loss and error reached after 30 epochs and the standard deviation over the last 10
epochs of the test loss and test error. The results are averaged over 10 seeds and the experiment
is performed for different learning rates.

As described in Section 6.3.3, for those tasks, the QP layers need to learn all the model
parameters (i.e., H, g, C, and u). We observe that it generates potentially very ill-conditioned
problems when the forward or the backward passes are not solved accurately enough. This
phenomenon appears to be amplified with larger learning rates. In those situations, it appears
that robust solution methods (e.g., allowing for temporary infeasible, or ill-conditioned problems)
are critical.
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Figure 6.17: Robustness statistics for denoising task:number of errors (i.e., NaNs), averaged final loss
reached after 30 epochs (with 95% confidence intervals), and averaged standard deviations over the last 10
epochs (with 95% confidence intervals). Results are averaged over 10 seeds. CvxpyLayer fails to be trained
for all these tasks.

Figure 6.17 and Figure 6.18 show that for too high learning rates (i.e., 10−4 or 10−5 for
denoising task and 10−2 for the classification task) the OptNet layer generate errors, whereas
it is never the case for QPLayer. Furthermore, for low learning rate levels (i.e., 10−6 or 10−7

for the denoising task and 10−3 and 10−4 for the classification task), the final loss reached is
similar but with a less important noise amplitude level when using QPLayer ( Figure 6.19
provides robustness statistics of the classification task using the prediction error rate of the two
layers). Finally, QPLayer is capable of being trained with a larger learning rate (i.e., 10−4 for
the denoising task and 10−2 for the classification task). Also, note that CvxpyLayer fails to be
run in all these robustness experiments because the Hessian part of the quadratic model fails to
fit the required DPP form [Amos et al., 2018, Section 4.1].
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Figure 6.18: Robustness statistics for MNIST classification task:number of errors (i.e., NaNs), averaged
final loss reached after 30 epochs (with 95% confidence intervals), and averaged standard deviations over
the last 10 epochs (with 95% confidence intervals). Results are averaged over 10 seeds. CvxpyLayer fails to
be trained for all these tasks.
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Figure 6.19: Robustness statistics for the MNIST classification: number of errors (i.e., NaNs), averaged
final prediction error reached after 30 epochs (with 95% confidence intervals), and averaged standard
deviations over the last 10 epochs (with 95% confidence intervals). Results are averaged over 10 seeds.

Remark 5 (Numerical differences with OptNet). Our approach offers a few numerical ad-
vantages compared to [Amos and Kolter, 2017]. In particular, a numerical matrix factorization
is at the center of most popular techniques for differentiating through QPs. This factorization
procedure represents one of the main bottlenecks in the computational costs. In our approach, we
need to factorize smaller and better-conditioned symmetric matrices.

The formulation exploited by OptNet consists of a larger linear system to compute its
Jacobians. More precisely, they factorize a matrix of the form:

K =

H 0 C⊤

0 D(z⋆) D(t⋆)
C I 0

 ,

where t⋆ = Cx⋆−u and D(z⋆) corresponds to a diagonal matrix whose diagonal entries correspond
to z⋆. For obtaining a symmetrized version that can be factorized with efficient methods, the second
row block is scaled by D(1/t⋆) [Amos and Kolter, 2017, Section 3.1]. Yet, symmetrization comes
at the price of being more sensitive to the localization of the solution w.r.t the constraints. Indeed,
if x⋆ lies on the boundary, i.e., CIx⋆ − uI = 0 for some component index I, the conditioning
of the matrix is degraded, as OptNet needs to divide by zeros (or small clamped numbers in
practice).
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On our side, the formulation for feasible QPs relies on a smaller matrix, which is symmetric
and better-conditioned (it does not require scaling rows by values that are potentially zeros,
see (6.9)).

6.4 Proofs

Section Content

Section 6.4.1 Lemma 5: solutions to QP-H.

ECJs and automatic
differentiation.

Lemma 6: path differentiability of G (Section 6.4.2).
Forward AD (general case, Section 6.4.3).
Backward AD (general case, Section 6.4.3).
Forward AD (feasible QPs, Lemma 6.4.3).
Backward AD (structurally feasible QPs, Equation 6.4.3).
Lemma 7: when do ECJs reduce to Jacobians? (Section 6.4.4).

Experimental setups. Description of the cart-pole problem (Section 6.4.5).

Table 6.5: Organization of the appendix. QP stands for “quadratic programming”, AD stands for “automatic
differentiation”, and (E)CJ stands for (extended) conservative Jacobian.

6.4.1 Proof of Lemma 5

To prove Lemma 5, we first show that solutions to (QP-H) are zeros of the map G:

G(x, z; θ) def=

 H(θ)x + g(θ) + C(θ)⊤z
[[C(θ)x− u(θ)]− + z]+ − z

C(θ)⊤[C(θ)x− u(θ)]+

 . (6.14)

Then, a suitable change of variable shows that finding a zero of G is equivalent to finding a zero
of map G.

Lemma 5. Let H(θ) ∈ Sn
+(R), g(θ) ∈ Rn, C(θ) ∈ Rni×n and u(θ) ∈ Rni be satisfying Assump-

tion 3. It holds that (x⋆, z⋆, s⋆) solves QP-H(θ) iff there exists t⋆ ∈ Rni s.t. G(x⋆, z⋆, t⋆; θ) = 0
and s⋆ = [t⋆]+.

Proof. We first show that (x⋆, z⋆, [Cx⋆ − u]+) solves (QP-H) if and only if G(x⋆, z⋆; θ) = 0.
The optimal shift s⋆ (that corresponds to the closest feasible QP) is equal to [Cx⋆ − u]+ and

is characterized by the ℓ2 optimality condition [Chiche and Gilbert, 2016, Lemma 2.13]:

C⊤[Cx⋆ − u]+ = 0.

Furthermore, for a feasible problem, the KKT conditions using a nonlinear complementarity
formulation [Sun and Qi, 1999] reads [De Marchi, 2022, Section 2.1]:

Hx⋆ + g + C⊤z⋆ = 0,

[Cx⋆ − u + z⋆]+ − z⋆ = 0.
(6.15)

To show equivalence, it is thereby sufficient to show that the second line of (6.15) corresponds to:

[[Cx⋆ − u]− + z⋆]+ − z⋆ = 0. (6.16)
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This equivalence is straightforward when (QP(θ)) is feasible, it therefore follows that we only
need to handle the infeasible case. When (QP(θ)) is primal infeasible, then t⋆ = Cx⋆ − u has a
set of components I ⊏ [1, ni] strictly positive, hence s⋆

I = [t⋆
I ]+ = t⋆

I > 0. For these components,
a solution x⋆ of the closest feasible QP lies on the border CIx⋆ = uI + t⋆

I . The complementarity
condition [De Marchi, 2022, Section 2.1] for these components reads:

[Cx⋆ − uI − t⋆
I︸ ︷︷ ︸

=0

+z⋆
I ]+ − z⋆

I = 0,

and we thus have [z⋆
I ]+ = z⋆

I . For the other set of components, which we denote by Ic, we have
s⋆

Ic = 0, and hence x⋆ follows the complementary conditions as in the feasible case

[Cx⋆ − uc
I + z⋆

Ic ]+ − z⋆
Ic = 0.

Therefore, it follows that (6.16) captures the two cases (that is, both feasible and infeasible QPs),
which concludes the first part of the proof.

Finally, introducing the slack variable t⋆ = C(θ)x⋆ − u(θ), we have

G(x⋆, z⋆; θ) = 0 (6.17)

⇔

 H(θ)x⋆ + g(θ) + C(θ)⊤z⋆

[[C(θ)x⋆ − u(θ)]− + z⋆]+ − z⋆

C(θ)⊤[C(θ)x⋆ − u(θ)]+

 = 0 (6.18)

⇔


H(θ)x⋆ + g(θ) + C(θ)⊤z⋆

C(θ)x⋆ − u(θ)− t⋆

[[t⋆]− + z⋆]+ − z⋆

C(θ)⊤[t⋆]+

 = 0 (6.19)

G(x⋆, z⋆, t⋆; θ) = 0. (6.20)

Hence G(x⋆, z⋆, t⋆) = 0 iff (x⋆, z⋆, [t⋆]+) solves (QP-H), which concludes the proof.

6.4.2 Proof of Lemma 6

Lemma 6. G is path differentiable w.r.t. x⋆, z⋆ and t⋆. Furthermore, if H(θ), g(θ), C(θ) and
u(θ) are differentiable w.r.t. θ, then G is path differentiable w.r.t. θ.

Proof. We start with the first claim of the lemma. The non-negative projector [.]+ is (component-
wise) convex, and hence path differentiable [Bolte and Pauwels, 2020, Proposition 2(i)]. Thus, it
remains to show that the third component of G is path differentiable for reaching the desired
conclusion.

To do so, we show that the third component is Lipschitz continuous and real semialge-
braic [Bolte and Pauwels, 2020, Proposition 2(iv)]. Without loss of generality, we restrict
ourselves to the case with 2 components (one for the dual variables, and one for the slack
variables) using the following function h : R2 → R, s.t. h(z, s) ≜ [[s]− + z]+ − z. Then, the
following Lipschitzness argument applies component-wise.
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Let (s1, z1) ∈ R2 and (s2, z2) ∈ R2:

|h(z1, s1)− h(z2, s2)| ≤ |[[s1]− + z1]+ − [[s2]− + z2]+|+ |z1 − z2|
≤ |[s1]− + z1 − [s2]− − z2|+ |z1 − z2| by monotonicity of [.]+
≤ |[s1]− − [s2]−|+ 2|z1 − z2|
= |s1 − [s1]+ − (s2 − [s2]+)|+ 2|z1 − z2|
≤ |s1 − s2|+ |[s1]+ − [s2]+|+ 2|z1 − z2|
≤ 2|s1 − s2|+ 2|z1 − z2| by monotonicity of [.]+

≤ 2
√

2∥
[
s1
z1

]
−
[
s2
z2

]
∥2.

Therefore, h is Lipschitz continuous. For showing that the third component G describes a
semi-algebraic set, we explicitly formulate the graph of h as a finite union of base semi-algebraic
sets, as follows:

gph(h) ={(z, s, y) ∈ R3|y = [s]− and [s]− + z > 0}
∪ {(z, s, y) ∈ R3|y = −z and [s]− + z = 0}
∪ {(z, s, y) ∈ R3|y = −z and [s]− + z < 0}

={(z, s, y) ∈ R3|y = s and s + z > 0 and s < 0}
∪ {(z, s, y) ∈ R3|y = s and s = 0}
∪ {(z, s, y) ∈ R3|y = 0 and z > 0 and s > 0}
∪ {(z, s, y) ∈ R3|y = −z and s + z = 0 and s < 0}
∪ {(z, s, y) ∈ R3|y = −z and z = 0 and s = 0}
∪ {(z, s, y) ∈ R3|y = −z and z = 0 and s > 0}
∪ {(z, s, y) ∈ R3|y = −z and s + z < 0 and s < 0}
∪ {(z, s, y) ∈ R3|y = −z and z < 0 and s = 0}
∪ {(z, s, y) ∈ R3|y = −z and z < 0 and s > 0}.

Hence, gph(h) is real and semi-algebraic as it is a finite union of sets defined by polynomial
equalities and inequalities. Hence h is Lipschitz continuous and real semi-algebraic, thereby
reaching the target conclusion for the first part of Lemma 6.

As for the second part of Lemma 6. G is linear, and hence differentiable, w.r.t. H(θ), g(θ),
C(θ) and u(θ). Furthermore, by assumption H(θ), g(θ), C(θ) and u(θ) are differentiable w.r.t. θ.
As differentiability implies path-differentiability [Bolte and Pauwels, 2020, Remark 3b], we arrive
at the desired claim by the conservativity of the chain rule for path-differentiable functions [Bolte
and Pauwels, 2020, Proposition 2].

6.4.3 Forward and backward AD for computing ECJs

This section provides technical details for the computation of ECJs in forward and backward
modes for both primal feasible and infeasible problems. We further include the proofs of ??
and Lemma 7.

General case

Forward pass. Let H(θ), g(θ), C(θ) and u(θ) be differentiable w.r.t. θ and satisfying Assump-
tion 3, and x⋆, z⋆, t⋆ s.t. G(x⋆, z⋆, t⋆; θ) = 0.
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As G is path-differentiable w.r.t. v⋆ ≜ (x⋆, z⋆, t⋆) (see Lemma 6), we have
H C⊤ 0
C 0 −I
0 Π1 − I Π1Π2
0 0 C⊤Π3

 ∈ ∂G(x⋆, z⋆, t⋆; θ)
∂v⋆

,

for some Π1 ∈ ∂[.]+([t⋆]− + z⋆), Π2 ∈ ∂[.]−(t⋆) and Π3 ∈ ∂[.]+(t⋆).
Furthermore, as G is linear w.r.t. H(θ), g(θ), C(θ) and u(θ) and H(θ), g(θ), C(θ) and u(θ)

are differentiable w.r.t. θ, the usual chain rule dictates that

∂G(x⋆, z⋆, t⋆; θ)
∂θ

=


∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

∂C
∂θ x⋆ − ∂u

∂θ
0

∂C
∂θ

⊤[t⋆]+

 .

Finally, as ∂[.]+(0) = ∂[.]−(0) = [0, 1], we make the following arbitrary choices in zeros

Π1 = I when [t⋆]− + z⋆ = 0,

Π2 = I when t⋆ = 0,

Π3 = 0 when t⋆ = 0,

(6.21)

so that Π3 = I −Π2. ECJs are thus retrieved as solutions to:

∂x⋆

∂θ
,
∂z⋆

∂θ
,
∂t⋆

∂θ
∈ arg min

∂x
∂θ

, ∂z
∂θ

, ∂t
∂θ

∥∥∥∥∥∥∥∥∥∥


H C⊤ 0
C 0 −I
0 Π1 − I Π1Π2
0 0 C⊤(I −Π2)




∂x
∂θ
∂z
∂θ
∂t
∂θ

+


∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

∂C
∂θ x⋆ − ∂u

∂θ
0

∂C⊤

∂θ [t⋆]+


∥∥∥∥∥∥∥∥∥∥

2

2

. (6.22)

In practice, solving this problem can be done via an augmented Lagrangian-based solver for the
problem:

∂x⋆

∂θ
,
∂z⋆

∂θ
,
∂t⋆

∂θ
∈ arg min

∂x
∂θ

, ∂z
∂θ

, ∂t
∂θ

0

s.t.


H C⊤ 0
C 0 −I
0 Π1 − I Π1Π2
0 0 C⊤(I −Π2)




∂x
∂θ
∂z
∂θ
∂t
∂θ

 = −


∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

∂C
∂θ x⋆ − ∂u

∂θ
0

∂C
∂θ

⊤[t⋆]+


(6.23)

when this problem is feasible. When it is not feasible, the augmented Lagrangian naturally
converges to the solution of the more general (6.22), see [Chiche and Gilbert, 2016, Proposition
4.2]. In comparison to (6.22), a notable advantage of the formulation (6.23) is that it is naturally
numerically more stable and sparse–by avoiding square matrix products from the objective.

Backward pass. The following lemma formally details the results from Equation 6.2.4.

Lemma 8. Let h : Rn×(Rni)2 → R be a differentiable function, and let H(θ), g(θ), C(θ) and u(θ)
be differentiable w.r.t. θ and satisfying Assumption 3. Then, denoting L(θ) ≜ h(x⋆(θ), z⋆(θ), s⋆(θ))
and under assumptions of ??, we have that ∂L

∂θ can be derived as follows

∂L
∂θ

= (b⋆
1)⊤ ∂H

∂θ
x⋆ + (b⋆

1)⊤ ∂g

∂θ
+ (b⋆

2)⊤ ∂C

∂θ
x⋆ + (z⋆)⊤ ∂C

∂θ
b⋆

1 + (s⋆)⊤ ∂C

∂θ
b⋆

4 − (b⋆
2)⊤ ∂u

∂θ
,
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where b⋆
1, b⋆

2, b⋆
3 and b⋆

4 are the solutions of the linear systemH C⊤ 0 0
C 0 (I −Π1) 0
0 −I −Π1Π2 (1−Π2)C




b⋆
1

b⋆
2

b⋆
3

b⋆
4

 = −


δL
δx⋆

δL
δz⋆

δL
δs⋆

 .

Proof. Under the assumptions of ??, it holds that


∂x⋆

∂θ
∂z⋆

∂θ
∂s⋆

∂θ

 is a CJ as


∂x⋆

∂θ
∂z⋆

∂θ
∂t⋆

∂θ

 and Π1
∂t⋆

∂θ ∈
∂s⋆

∂θ are

CJs ( [Bolte and Pauwels, 2020, Proposition 2]). Furthermore, as L is differentiable w.r.t. x⋆, z⋆

and s⋆, it is path-differentiable [Bolte and Pauwels, 2020, Remark 3b] w.r.t. x⋆, z⋆, s⋆, so we can
apply chain rule ( [Bolte and Pauwels, 2020, Proposition 2]):

∂L
∂θ

= ∂L
∂x⋆

⊤ ∂x⋆

∂θ
+ ∂L

∂z⋆

⊤ ∂z⋆

∂θ
+ ∂L

∂s⋆

⊤ ∂s⋆

∂θ

= −(−


δL
δx⋆

δL
δz⋆

δL
δs⋆

)⊤


∂x⋆

∂θ
∂z⋆

∂θ
∂s⋆

∂θ



= −(


H C⊤ 0
C 0 −I
0 Π1 − I Π1Π2
0 0 C⊤(I −Π2)




b⋆
1

b⋆
2

b⋆
3

b⋆
4

)⊤


∂x⋆

∂θ
∂z⋆

∂θ
∂s⋆

∂θ



= −


b⋆

1
b⋆

2
b⋆

3
b⋆

4


⊤

(−


∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

∂C
∂θ x⋆ − ∂u

∂θ
0

∂C
∂θ

⊤[t⋆]+

)

= (b⋆
1)⊤(∂H

∂θ
x⋆ + ∂g

∂θ
+ ∂C

∂θ

⊤
z⋆)

+ (b⋆
2)⊤(∂C

∂θ
x⋆ − ∂u

∂θ
)

+ (b⋆
4)⊤(∂C

∂θ

⊤
[t⋆]+)

= (b⋆
1)⊤ ∂H

∂θ
x⋆ + (∂C

∂θ
b⋆

1)⊤z⋆ + (b1)⊤ ∂g

∂θ

+ (b⋆
2)⊤(∂C

∂θ
x⋆ − ∂u

∂θ
)

+ (∂C

∂θ
b⋆

4)⊤[t⋆]+),

with b⋆
1, b⋆

2, b⋆
4 solution of the nonsingular system (see ??)H C⊤ 0 0

C 0 (I −Π1) 0
0 −I Π1Π2 (1−Π2)C




b⋆
1

b⋆
2

b⋆
3

b⋆
4

 = −


δL
δx⋆

δL
δz⋆

δL
δs⋆

 ,

thereby reaching the desired statement with s⋆ = [t⋆]+.

Simplification of when QP is feasible

Simplification of the forward pass When QP(θ) is feasible and H(θ), g(θ), C(θ) and u(θ)
are differentiable w.r.t. θ and satisfy Assumption 3, then [t⋆]+ = 0. Further, our choices of
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subgradients at zero (see (6.21)) imply that Π2 = I and hence the following simplifications
H C⊤ 0
C 0 −I
0 Π1 − I Π1
0 0 0

 ∈ ∂G(x⋆, z⋆, t⋆; θ)
∂v⋆

,


∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

∂C
∂θ x⋆ − ∂u

∂θ
0
0

 = ∂G(x⋆, z⋆, t⋆; θ)
∂θ

.

Moreover, the optimality conditions of

∂x⋆

∂θ
,
∂z⋆

∂θ
,
∂t⋆

∂θ
∈ arg min

∂x
∂θ

, ∂z
∂θ

, ∂t
∂θ

∥∥∥∥∥∥∥∥∥


H C⊤ 0
C 0 −I
0 Π1 − I Π1
0 0 0




∂x
∂θ
∂z
∂θ
∂t
∂θ

+


∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

∂C
∂θ x⋆ − ∂u

∂θ
0
0


∥∥∥∥∥∥∥∥∥

2

2

,

write down

(H2 + C⊤C)∂x⋆

∂θ
+ HC⊤ ∂z⋆

∂θ
− C⊤ ∂t⋆

∂θ
+ [H(∂H

∂θ
x⋆ + ∂g

∂θ
+ ∂C

∂θ

⊤
z⋆) + C⊤(∂C

∂θ
x⋆ − ∂u

∂θ
)] = 0,

CH
∂x⋆

∂θ
+ (C⊤C + I −Π1)∂z⋆

∂θ
+ C(∂H

∂θ
x⋆ + ∂g

∂θ
+ ∂C

∂θ

⊤
z⋆) = 0,

−C
∂x⋆

∂θ
+ (I + Π1)∂t⋆

∂θ
− (∂C

∂θ
x⋆ − ∂u

∂θ
) = 0.

(6.24)

Third equation of (6.24) leads to

∂t⋆

∂θ
= 1

1 + Π1
(C ∂x⋆

∂θ
+ (∂C

∂θ
x⋆ − ∂u

∂θ
)).

Hence, optimality conditions without variable ∂t⋆

∂θ reduce to

(H2 + C⊤ Π1
1 + Π1

C)∂x⋆

∂θ
+ HC⊤ ∂z⋆

∂θ
+ C⊤ Π1

1 + Π1
(∂C

∂θ
x⋆ − ∂u

∂θ
) + H(∂H

∂θ
x⋆ + ∂g

∂θ
+ ∂C

∂θ

⊤
z⋆) = 0,

CH
∂x⋆

∂θ
+ (C⊤C + I −Π1)∂z⋆

∂θ
+ C(∂H

∂θ
x⋆ + ∂g

∂θ
+ ∂C

∂θ

⊤
z⋆) = 0.

(6.25)

Furthermore, the following problem

min
∂x
∂θ

, ∂z
θ

∥∥∥∥∥
[

H C⊤
Π1√
1+Π1

C Π1 − I

] [
∂x
∂θ
∂z
∂θ

]
+
[

∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

Π1√
1+Π1

(∂C
∂θ x⋆ − ∂u

∂θ )

]∥∥∥∥∥
2

2

,

have the same KKT conditions as (6.25), thereby allowing to simplify the problem as follows:

min
∂x
∂θ

, ∂z
∂θ

, ∂t
∂θ

∥∥∥∥∥∥∥
∂G(x⋆, z⋆, s⋆; θ)

∂v̂⋆


∂x
∂θ
∂z
∂θ
∂t
∂θ

+ ∂G(x⋆, z⋆, s⋆; θ)
∂θ

∥∥∥∥∥∥∥
2

2

= min
∂x
∂θ

, ∂z
∂θ

∥∥∥∥∥
[

H C⊤
Π1√
I+Π1

C Π1 − I

] [
∂x
∂θ
∂z
∂θ

]
+
[

∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

Π1√
I+Π1

(∂C
∂θ x⋆ − ∂u

∂θ )

]∥∥∥∥∥
2

2

,

(6.26)
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Hence

∂x⋆

∂θ
,
∂z⋆

∂θ
,
∂t⋆

∂θ
∈ arg min

∂x
∂θ

, ∂z
∂θ

, ∂t
∂θ

∥∥∥∥∥∥∥
∂G(x⋆, z⋆, s⋆; θ)

∂v̂⋆


∂x
∂θ
∂z
∂θ
∂t
∂θ

+ ∂G(x⋆, z⋆, s⋆; θ)
∂θ

∥∥∥∥∥∥∥
2

2

is equivalent to

∂x⋆

∂θ
,
∂z⋆

∂θ
∈ arg min

∂x
∂θ

, ∂z
∂θ

∥∥∥∥∥
[

H C⊤
Π1√
1+Π1

C Π1 − I

] [
∂x
∂θ
∂z
∂θ

]
+
[

∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

Π1√
1+Π1

(∂C
∂θ x⋆ − ∂u

∂θ )

]∥∥∥∥∥
2

2

,

δt⋆

δθ
= (I + Π1)−1(C δx⋆

δθ
+ ∂C

∂θ
x⋆ − ∂u

∂θ
).

Simplification of the backward pass. This sections details the results from Lemma 6.2.4.

Lemma 9. Let h : Rn×(Rni)→ R be a differentiable function, and let H(θ), g(θ), C(θ) and u(θ)
be differentiable w.r.t. θ and satisfying Assumption 3. Then, denoting L(θ) ≜ h(x⋆(θ), z⋆(θ)), we
have under assumptions of Lemma 7 that ∂L

∂θ can be derived as follows

∂L
∂θ

= (b⋆
x)⊤ ∂H

∂θ
x⋆ + (b⋆

x)⊤ ∂g

∂θ
+ (Π1b⋆

z)⊤ ∂C

∂θ
x⋆ + (z⋆)⊤ ∂C

∂θ
b⋆

x − (Π1b⋆
z)⊤ ∂u

∂θ
,

with b⋆
x, b⋆

z, the solution of the following linear system[
H C⊤Π1
C −(I −Π1)

] [
bx

bz

]
= −

[
δL
δx⋆

δL
δz⋆

]
,

Furthermore, this latter linear system can be solved using iterative refinement.

Proof. Under the assumptions of Lemma 7, it holds that
[

∂x⋆

∂θ
∂z⋆

∂θ

]
is a Jacobian. Furthermore, as

L is differentiable, the chain rule implies that:

∂L
∂θ

=
[

∂L
∂x⋆

∂L
∂z⋆

]⊤ [∂x⋆

∂θ
∂z⋆

∂θ

]

=− (−
[

∂L
∂x⋆

∂L
∂z⋆

]
)⊤
[

∂x⋆

∂θ
∂z⋆

∂θ

]

=− (
[

H C⊤

Π1C Π1 − I

]⊤ [
bx

bz

]
)⊤
[

∂x⋆

∂θ
∂z⋆

∂θ

]
as the matrix is nonsingular (see Lemma 7)

=−
[
bx

bz

]⊤

(−
[

∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

Π1(∂C
∂θ x⋆ − ∂u

∂θ )

]
)

=(bx)⊤(∂H

∂θ
x⋆ + ∂g

∂θ
+ ∂C

∂θ

⊤
z⋆)

+ (bz)⊤(Π(dCx⋆ − du))

=[(bx)⊤ ∂H

∂θ
x⋆ + (∂C

∂θ
bx)⊤z⋆ + (bx)⊤ ∂g

∂θ
]

+ (bz)⊤(Π(∂C

∂θ
x⋆ − ∂u

∂θ
)),
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where (bx, bz) is a solution to [
H C⊤Π1
C −(I −Π1)

] [
bx

bz

]
= −

[
δL
δx⋆

δL
δz⋆

]
.

As detailed in the proof of Lemma 7 (see details in Section 6.4.4), one can equivalently solve[
H C⊤

J

CJ 0

] [
bx

bzJ

]
= −

[
δL
δx⋆

δL
δz⋆

J

]
,

bzc
J

= δL
δz⋆

Jc

,

with Jc the index set for which the solution is strictly feasible (i.e., i ∈ [1, ni], (Π1)i = 0), and J
the set of active constraints (i.e., for which (Π1)i = 1). Such linear systems can be solved e.g.,
via iterative refinement (as the matrix involved is symmetric positive semi-definite [Parikh and
Boyd, 2014, Section 4.1.2]).

6.4.4 Proof of Lemma 7

This section details the proof of Lemma 7, ensuring that, under some regularity assumptions,
ECJs reduce to standard Jacobians.

Lemma 7. If QP(θ) is feasible and H(θ), g(θ), C(θ) and u(θ) are differentiable w.r.t. θ and
satisfy Assumption 3, and if the KKT matrix of active constraints is nonsingular and x⋆, z⋆ satisfy
strict complementarity, then the ECJs matches the standard Jacobian, i.e., ∂x⋆(θ)

∂θ = ∇x⋆(θ) and
∂z⋆(θ)

∂θ = ∇z⋆(θ).

Proof. If (QP(θ)) is feasible, then the ECJs of x⋆ and z⋆ w.r.t. θ are provided by

∂x⋆

∂θ
,
∂z⋆

∂θ
∈ arg min

∂x
∂θ

, ∂z
∂θ

∥∥∥∥∥∥∥∥∥∥∥
[

H C⊤
Π1√
1+Π1

C Π1 − I

]
︸ ︷︷ ︸

≜∆

[
∂x
∂θ
∂z
∂θ

]
+
[

∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

Π1√
1+Π1

(∂C
∂θ x⋆ − ∂u

∂θ )

]∥∥∥∥∥∥∥∥∥∥∥

2

2

, (6.27)

where Π1 corresponds to a binary diagonal matrix of the complementarity conditions Cx⋆−u+z⋆ ≥
0. Denoting by Jc the index set for which the solution is strictly feasible (i.e., i ∈ [1, ni], (Π1)i = 0),
and by J the index set of active constraints (i.e., for which (Π1)i = 1) then ∆ can be reformulated
as follows (by strict complementary)

∆ =

 H C⊤
J C⊤

Jc

1√
2CJ 0 0
0 0 −I

 ,

with I being the identity matrix of appropriate dimension. Furthermore, the right-hand side of
the linear system within the ℓ2 norm becomes

∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

1√
2(∂CJ

∂θ x⋆ − ∂uJ
∂θ )

0

 .
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[
H C⊤

J

CJ 0

]
corresponds to the KKT matrix of active constraints, and is nonsingular by assumption.

As it implies nonsingularity of
[

H C⊤
J

1√
2CJ 0

]
, it follows that :

∂z⋆
Jc

∂θ
= 0,

and the solution to (6.27) is uniquely determined as the solution of the following linear system
(as in [Amos and Kolter, 2017, Appendix A], after multiplying second row block by

√
2):[

H C⊤
J

CJ 0

] [
∂x⋆

∂θ
∂z⋆

∂θ

]
= −

[
∂H
∂θ x⋆ + ∂g

∂θ + ∂C
∂θ

⊤
z⋆

∂CJ
∂θ x⋆ − ∂uJ

∂θ

]
,

Hence, we arrive at the desired conclusion that ECJ coincides with the usual Jacobian in this
case.

6.4.5 Experimental setting

Description of the cart-pole problem

The cart-pole system [Anderson, 1989] is a classic control problem used for benchmarking control
algorithms. The system we consider consists of an extended model with dry friction on the
joints of the cart-pole, namely on the prismatic cart joint and the revolute joint of the pole.
It makes the dynamics non-smooth. It is described by a set of differential equations relating
the position, velocity, acceleration, angle, and angular velocity of the cart and pole plus the
additional friction forces. The static friction forces on each joint can be obtained by solving a
QP problem, see (6.28) and [Le Lidec et al., 2021].

Task: The initial position of the cart-pole system consists of the pole hanging down vertically.
The objective of the task is to move the cart in such a way as to swing the pole up and keep it
balanced in the upright position. To swing the pole up, the control inputs may involve moving
the cart back and forth in a particular pattern that generates the necessary forces to overcome
the friction and accelerate the pole in the desired direction.

The forward dynamics with friction

Ma = τ + λ,

can be re-written in terms of velocity and impulses with timestep ∆t as

v = vf + M−1λ∆t = vf + M−1Λ,

were M is the inertia matrix of the system, a ∈ Rnv is the joint acceleration, τ ∈ Rnv the joint
torque, vf the free velocity of the system without friction and λ ∈ Rnv the dry friction force
on every joint. To obtain the friction impulse Λ corresponding to the friction coefficient η, the
following quadratic problem can be solved:

min
Λ

1
2ΛT M−1Λ + vT

f Λ

s.t. |Λ| ≤ η.
(6.28)

Its Lagrangian L can be written as follows

L(Λ, y) := 1
2ΛT M−1Λ + vT

f Λ + yT (|Λ| − η),
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which leads to the KKT system:

M−1Λ + vf + diag(sign(Λ))y = 0, (6.29)
|Λ| ≤ η, (6.30)
y ≥ 0, (6.31)
y ⊙ [|Λ| − η] = 0, (6.32)

where ⊙ stands for the standard Hadamard product. Considering the case where the friction
force is within the friction cone for a specific joint j, i.e., |Λj | < ηj , the joint is then not moving.
We see from (6.32) that yj = 0 satisfies (6.31) and we get from (6.29)

M−1Λj = −vf,j .

Consequently, the friction impulse is acting in the opposite direction than the joint torque τj

and with a magnitude that is canceling out the free velocity. If |Λj | = ηj , the joint will no longer
be blocked by the friction forces and will thus start moving. We see from (6.29) that

M−1Λj + vf,j = vj = −diag(sign(Λj))yj . (6.33)

As y ≥ 0, (6.33) shows that Λ is opposed to the velocity of the joint.
Optimal control algorithms such as Differential Dynamic Programming (DDP) can be used to

compute the optimal trajectory that minimizes a cost function over a finite time horizon, subject
to the dynamics of the cart-pole system and control input constraints.

These methods take advantage of the derivatives of the dynamics to efficiently control physical
systems. In the presence of non-smooth dynamics, such a class of algorithms is likely to fail
due, for instance, to the presence of discontinuities in the dynamics derivatives or because of the
non-informative gradient [Lidec et al., 2022]. In the cart-pole benchmark, randomized smoothing,
as proposed by [Lidec et al., 2022,Suh et al., 2021] is used to cope with the non-smooth dynamical
system. For the optimal swing-up trajectory with 20 timesteps, 5 random samples with a uniform
Gaussian noise are generated. The random noise is applied to the input controls, and the
dynamics are calculated for each of them and afterward averaged in the forward pass, resulting
in informative gradients in the backward pass. The problem (6.28), has to be solved for every
random sample in every timestep.
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Chapter7
Conclusion

7.1 Summary of the Thesis
Modern applications of control problems are computationally challenging and require fast and
robust numerical calculations. Quadratic programming plays a pivotal role for these domains,
since it is used in numerous practical applications [Redon et al., 2002,Carpentier and Wieber,
2021,Escande et al., 2014,Herzog et al., 2016,Kuindersma et al., 2016,Wieber, 2006a,Wieber,
2006b,Wensing et al., 2022,Leineweber et al., 2003,Houska et al., 2011,Tassa et al., 2014,Jallet
et al., 2022a]. Recent advances of differentiable optimization have also illustrated that Quadratic
Programming layers offer a rich modeling power and can be effective for solving better certain
machine learning tasks [Amos and Kolter, 2017,Bounou et al., 2021,Geng et al., 2020,Lee et al.,
2005,Le Lidec et al., 2021,Amos et al., 2017,Donti et al., 2017].

In this thesis we have introduced a new algorithm for solving generic QPs, motivated by
robotic and control applications. Among others, we notably propose to combine the bound con-
straint Lagrangian (BCL) globalization strategy [Conn et al., 1991] for automatically scheduling
key parameters of a primal-dual proximal augmented Lagrangian algorithm. The intermediary
proximal subproblems are solved in quadratic time via a semi-smooth Newton method. Addi-
tionally, we have shown that the ProxQP algorithm features a global convergence guarantee,
as well as a few other advantageous numerical properties. Furthermore, we have highlighted
that the ProxQP algorithm, and more generally primal-dual Proximal augmented Lagrangian
methods, actually solves the closest primal-feasible QP—in a classical ℓ2 sense—if the original
QP appears to be primally infeasible. As a corollary of its global convergence proof, ProxQP is
also guaranteed to find constant penalization parameters in finite time.

The convergence guarantees come together with an efficient software implementation of
ProxQP in the open-source ProxSuite library. It contains several practical features for
embedded optimization. The performance of ProxQP is illustrated on different standard sparse
and dense robotic and control experiments, including a real-world closed-loop controller applica-
tion. In particular, we have highlighted how solving the closest feasible QPs can be efficiently
leveraged in the context of closed-loop convex MPC. Finally, through various benchmarks of the
optimization literature, we have also shown that ProxQP performs at the level of state-of-the-art
solvers on a large set of generic QP problems.

The study of the closest feasible QPs has then motivated us to enrich the expressive capabilities
of existing QP layers. We have introduced an approach for differentiating both feasible and
infeasible convex quadratic programs in a unified fashion. In particular, by leveraging augmented
Lagrangian techniques for solving QP layers that are potentially infeasible, we propose an
extended conservative Jacobian formulation for differentiating convex QPs, covering both feasible
and infeasible problems. For feasible problems, and when the solution is differentiable, this
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reduces to standard Jacobians. We then show how driving towards feasibility at test time a new
scope of QP layers using our techniques. We illustrate that training these new types of QP layers
leads to better-predicting power for solving some tasks.

We further provide an open-source C++ framework, referred to as QPLayer, which effi-
ciently implements the approach. Through extensive benchmarks and experiments, we have
also demonstrated how QPLayer is simultaneously faster and numerically more robust than
alternative state-of-the-art optimization layers on traditional learning tasks.

7.2 Perspectives
This thesis also raises new research avenues and opportunities concerning using advanced
optimization techniques and solvers in many domains.

Towards Non-linear and Non-Convex Programming: A first area of exploration consists
of extending the primal-dual proximal augmented Lagrangian framework developed for non-linear
programs, both at the constraint and cost levels, as well as for constrained trajectory optimization
problems. This extension builds upon recent endeavors in this direction [Jallet et al., 2022a,Jallet
et al., 2022b].

Extending QPLayer to Other Conic Constraints: Another captivating research trajectory
involves expanding the QPLayer approach to encompass various conic problems. This line of
study poses two fundamental and practical inquiries:

• Firstly, when considering a convex conic problem, what assumptions govern the convergence
of PMM (and other splitting operators) towards the "closest" feasible problem? Are there
inherent limitations that delineate the scope of this property?

• Secondly, in cases where a conic problem solution lacks differentiability in any form, does
a least-squares estimate, serving as an alternative "gradient," possess theoretical guarantees
for offering an "informative" direction for minimizing certain losses? More generally, which
alternative gradient would be the best fit?

Exploring Practical Applicability of Closest-Feasible Solutions: The initial series of
experiments employing the closest feasible QP solutions has yielded promising results within
this thesis—whether it pertains to expanding the range of learnable QPs or enables dealing with
infeasible random perturbations in control scenarios. Delving further into alternative experiments
to practically assess the use of this feature in other contexts is also an interesting subject.

Software Development and Outreach: Regarding software development, I am enthusiastic
about providing long-term support to facilitate the dissemination of this approach across research,
industrial, and commercial domains. Moreover, I would be happy to extend the capabilities of
the ProxSuite library to encompass a broader spectrum of optimization problems.
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MOTS CLÉS

programmation quadratique; optimisation différentiable; optimisation numérique; contrôle optimal; robotique.

RÉSUMÉ

Les applications modernes de problèmes de contrôle posent des défis computationnels et requièrent des calculs
numériques rapides et robustes. La programmation quadratique joue un rôle central pour ces domaines, étant utilisée
dans de nombreuses applications pratiques. Les avancées récentes de l’optimisation différentiable ont également montré
que les couches de programmation quadratique offrent une puissance de modélisation riche et peuvent être efficaces
pour résoudre certaines tâches d’apprentissage automatique de manière améliorée. Dans cette thèse, nous avons in-
troduit un nouvel algorithme, PROXQP, pour résoudre des problèmes génériques de programmation quadratique (QP).
Entre autres, nous proposons notamment de combiner la stratégie de globalisation de contraintes de borne Lagrangienne
(BCL) pour calibrer automatiquement les paramètres clés d’un algorithme Lagrangien dual proximal augmenté. Nous
avons également montré que PROXQP peut résoudre le QP faisable le plus proche si le QP original est infaisable. Ces
améliorations théoriques sont accompagnées d’une implémentation logicielle efficace de PROXQP dans la bibliothèque
open-source PROXSUITE. Nous avons évalué les performances de PROXQP sur diverses expériences standard de robo-
tique et de contrôle, y compris une dans le contexte d’une application sur rorbot réel. En particulier, nous avons mis
en évidence que la résolution des QP faisables les plus proches peut être efficacement exploitée dans le contexte de la
commande prédictive. Enfin, à travers diverses évaluations issues de la littérature en optimisation, nous avons également
démontré que PROXQP se situe au niveau des solveurs de pointe pour une large gamme de problèmes QP génériques.
L’étude des QP faisables les plus proches nous a ensuite poussée à enrichir les capacités expressives des couches de
QP existantes. En particulier, nous proposons une formulation de Jacobienne conservatrice étendue pour différencier
les QPs convexes, couvrant à la fois les problèmes faisables et infaisables. Pour les problèmes faisables, et lorsque la
solution est différentiable, cela se réduit aux Jacobiens standards. Nous illustrons notamment que l’entraînement de ces
nouvelles types de couches de QPs conduit à une meilleure capacité de prédiction pour résoudre certaines tâches. Enfin,
nous fournissons un bibliothèque C++ open-source, appelé QPLAYER, qui implémente efficacement l’approche.

ABSTRACT

Modern applications of control problems are computationally challenging and require fast and robust numerical calcula-
tions. Quadratic programming plays for these domains a pivotal role since it is used in numerous practical applications.
Recent advances of differentiable optimization have also illustrated that Quadratic Programming layers offer a rich mod-
eling power and can be effective for solving certain machine learning tasks. In this thesis, we have introduced a new
algorithm, PROXQP, for solving generic QPs. Among others, we notably propose to combine the bound constraint La-
grangian (BCL) globalization strategy for automatically scheduling key parameters of a primal-dual proximal augmented
Lagrangian algorithm. Additionally, we show that the PROXQP algorithm features a global convergence guarantee, as
well as a few other advantageous numerical properties. Furthermore, we highlight that the PROXQP algorithm actually
solves the closest primal-feasible QP if the original QP appears to be primally infeasible. These convergence guaran-
tees come together with an efficient software implementation of PROXQP in the open-source PROXSUITE library. The
performance of PROXQP is evaluated on different robotic and control experiments, including a real-world closed-loop
controller application. In particular, we have highlighted how solving the closest feasible QPs can be efficiently leveraged
in the context of closed-loop convex MPC. Finally, through various benchmarks of the optimization literature, we have also
shown that PROXQP performs at the level of state-of-the-art solvers on a large set of generic QP problems. The study of
the closest feasible QPs has then motivated us to enrich the expressive capabilities of existing QP layers. In particular,
we propose an extended conservative Jacobian formulation for differentiating convex QPs, covering both feasible and
infeasible problems. For feasible problems, and when the solution is differentiable, this reduces to standard Jacobians.
We then show how driving towards feasibility at test time a new scope of QP layers using our techniques. We illustrate
that training these new types of QP layers leads to better predicting power for solving some tasks. We further provide an
open-source C++ framework, referred to as QPLAYER, which efficiently implements the approach.

KEYWORDS

quadratic programming; differentiable optimization; numerical optimization; optimal control; robotics.
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