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Quadratic Programming Differentiation

Objective: differentiate closest feasible Quadratic Programs (QPs) solution,
under robustness, accuracy and speed requirements
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s.t. x⋆(θ), z⋆(θ) ∈ arg min
x∈Rn

max
z∈Rni

+

L(x , z , s; θ),
(QP-H(θ))

with L(x , z , s; θ) ≜ 1
2x

⊤H(θ) x + x⊤g(θ) + z⊤(C (θ)x − u(θ)− s), H ∈ S+(Rd)
(i.e., symmetric positive semi-definite), g ∈ Rd C ∈ Rni×d , u ∈ Rni and s ∈ Rni

smallest in ℓ2 norm. When feasibility enforced: s⋆(θ) = 0, and equivalent to
classic convex QPs.
Typically: θ = {H , g ,C , u}, which is not necessarily feasible.

Why is it relevant?
▶ QP: ubiquitous tool, optimization differentiation provides inductive knowledge

▶ Yet, differentiation is often not possible, which restricts layer architecture and
the approach expressivity

Practical relevance of Quadratic Programming
▶ Robotics (e.g., motion planning, whole-body control, optimization-based

control, etc.)

▶ beyond Robotics (control, machine learning, etc.)

Contributions
▶ An extended and unified approach for differentiating robustly and

quickly closest feasible QP solutions
▶ Working guarantees under current used assumptions [1, 2]
▶ Least square estimate otherwise [3],

▶ A dedicated C++ solver with forward and backward modes integrated in
ProxSuite and linkable with PyTorch.

Our approach

Design an extensive conservative Jacobian definition
▶ Closest feasible QP KKT

We show that canceling this path differentiable map G is equivalent to solving
Problem QP-H(θ)

G (x , z , t; θ) :=


H(θ)x + g + C (θ)⊤z
C (θ)x − u(θ)− t
[[t]− + z ]+ − z
C (θ)⊤[t]+

 , (G)

At optimality, s⋆ = [t⋆]+.

▶ Closest feasible solution conservative Jacobians
Considering, v ⋆ := (x⋆, z⋆, t⋆) a solution to QP-H(θ), we define its Extended
Conservative Jacobians (ECJ) as follows
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▶ Well-posedness
If the Problem (??) is feasible and satisfies standard assumption, we recover
standard implicit differentiation.

Efficient derivation
▶ Forward pass

We leverage Augmented Lagrangian capability to converge naturally towards
the closest feasible problem solution [4].
We use ProxQP as a backend [5] based on revisited primal-dual augmented
Lagrangian methods.

▶ Backward pass general case
Considering a loss L, if we can solve the equality constrained QP, then
following [1]

min
b1,b2,b3,b4

0 (2)

s.t.

H CT 0 0
C 0 (I − Π1) 0
0 −I −Π1Π2 (1− Π2)C



b1
b2
b3
b4

 = −

δL
δx
δL
δz
δL
δt

 , (3)

the ECJs are recovered with simple update rules (Π1 and Π2 are diagonal
matrices). Otherwise, we use forward mode. If primal feasibility is enforced
we show it simplifies to a small well conditioned linear system.

Benchmarks

OptNet QPLayer

Forward pass (ms) 615.84 ± 16.15 55.2 ± 6.93

Backward pass (ms) 61.26 ± 2.84 39.27 ± 2.17

Final Loss 0.02604 0.02556

Table: Average computational times (over 800 epochs) for solving a
cart-pole example with friction when using OptNet or QPLayer.
Randomized smoothing is used for obtaining informative
gradients [6].
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Figure: Strictly convex QP layer enforced to be primal feasible. We
learn here A and z0 > 0 to solve Sudoku problems.
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Figure: LP layer. We learn here only A to solve Sudoku problems.
The QPLayer approach enables learning a feasible layer.
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Figure: Sudoku training and test plots using QPLayer and OptNet
layers. QPLayer can learn LPs, whereas OptNet is restricted to
strictly convex QPs, which limits its representational power.
QPLayer can also be specialized to learn models satisfying specific
linear constraints.

Future work

▶ Extension to GPUs, multi CPUs,

▶ Beyond LPs and QPs: SOCPs, SDPs, etc..
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