

Reading group 1 Control systems and RL

Antoine Bambade

Willow and Sierra teams

Contents

01. Introduction02. Control "Crash Course"03. Exercise 2.304. Conclusion

Introduction

Introduction

Objective

• Discover or deepen RG topic

Support

- "Control systems and Reinforcement Learning", Sean Meyn
- Discussion
- papers
- talks
- ...

Organization

tivités		🕴 Navig	ateur We	b Firefox	-					3 0	ct. 19:11								- A (6 I
	<	🖬 Re 🛪	🔏 Po	ida 📜	1810 W	Synti A	Applicat 🤱	osq	Conr	S Draf	S LDL	T 🚫 Ele	m Riccati_	Algorit	h lu_upo	la C>	+	~	-	đ
	~	\rightarrow (° @		08	https://	docs.google	.com/sp	readsheet	s/d/133B	IwVMNosT	Vca75_HN	13c-ojPkpb4	ochGz_vFC	6 7 %	☆		⊠ lir		0
	œ	Reading Fichier B	Group Con Stion Affich	trol ☆ ấ ige Insertion	Format Donni	ies Outils M	Aodules compléme	ntaires Aide											🛔 Partag	•
<u> </u>		~ 6 7	100% ×	(<u>s</u>	.00 123 v Para	etad	• • B I	6 <u>A</u> 4	⊞ 23 v	≣•±•№	- % - 00 p	067-3								^
		• 14		c					н			×		м	N	0		0		
																				1
			Book availa	ble here:	https://www.dk	ers tri-bachte	mp/Ri, Book Meyn	141												_
	4	Section	Cate	Mour	Room	Presenter.	Boord status													
			05	10 10h-12h	JLLions 1	Aresine	booked													
_		3	27/	10 10h-12h	3.1.2	Eloise	(to be confirmed													
		4	10	11 10h-12h	3.1.2		(to be confirmed													
	÷		24	11 105-125	JUL2															
1 -	10		22	12 10h-12h	312															
			12	1 10h-12h																
N.	13																			
	14	20																		
	10	1																		
		1																		
11.	18	34																		
	19																			
	20																			
		link to join math	emost																	
	24	htps://matherm	est irria bibigra	p user complet	w/7id=5ky64c2027	bidiamatolta	ah da													
	25	login with innia	CAS																	
	20																			
	27																			
1	29																			
7	30																			
1	32																			
	22																			
	25																			
	30																			
•		+ = 3	ichedule -	Découpage	• People	-														Ø

Control "Crash Course"

Control "Crash Course"

Plan

- 1) Notations
- 2) What to do ?
 - > modeling
 - > assessing performance
- 3) RL "main" algorithms

Notations

- ff : feedforward control
- *u* : inputs
- y : observations
- ϕ : policy

Parameters

- ff : feedforward control
- *u* : inputs
- y : observations
- ϕ : policy

Often : $u(k) = u_{ff}(k) + u_{fd}(k)$

2.1 : You have a Control Problem

Parameters

- ff : feedforward control
- *u* : inputs
- y : observations
- ϕ : policy

Often : $u(k) = u_{ff}(k) + u_{fd}(k)$

What to do about it?

• 1) Ceate model

$$y(k) = G_k(u(0), u(1), ..., u(k)), k \ge 0$$

- 2) Design policy ϕ
- 3) Assess performance

Objective

Design a simple and faithful model.

$$y(k) = G_k(u(0), u(1), ..., u(k)), k \ge 0$$

Examples of models

• Linear and Time invariant (LTI)

$$y(k) = \sum_{i=0}^{k} b_i u(k-i), k \ge 0$$

• Auto-Regressive Moving-Average (ARMA)

$$y(k) = -\sum_{i=1}^{N} a_i y(k-i) + \sum_{i=0}^{M} b_i u(k-i)$$

Definition

- State space **X**
- Action space **U**
- Observation space Y
- State equations

$$\begin{cases} x(k+1) = F(x(k), u(k)) \\ x(0) = x_0 \\ y(k) = G(x(k), u(k)) \end{cases}$$

Remarks

- state definition must simplify control design
- Unknown quantities can be learned with input-output measurements

Definition

- X,U,Y usually subsets of euclidean spaces
- State equations

$$\begin{cases} x(k+1) = Fx(k) + Gu(k) \\ x(0) = x_0 \\ y(k) = Hx(k) + Eu(k) \end{cases}$$

Linear State feedback

u(k) = -Kx(k), K : gain matrix

Objectives

Evaluate

- long-run behavior of state process
- metric performance (total cost)

Plan

- definitions (total cost, equilibria)
- Stability results (discrete, continuous case)
- Application (linear case)

2.4.1 Total cost

Total cost

$$J(x) = \sum_{k=0}^{\infty} c(x(k)), x(0) = x \in \mathbf{X}$$

- If J is finite, stability typically guaranteed
- related to average cost (optimal control)
- "forward looking"

Definition : stable in the sense of Lyapunov

The equilibrium x^{ε} is stable in the sense of Lyapunov if for all ε , there exists $\delta > 0$ such that if $||x_0 - x^{\varepsilon}|| < \delta$, then

$$\|\mathcal{X}(k, x_0) - \mathcal{X}(k, x^{\varepsilon})\| < \varepsilon$$
, for all $k \ge 0$

Asymptotic Stability

An equilibrium x^{ε} is said to be asaymptotically stable if x^{ε} is stable in the sense of Lyapunov and for some $\delta_0 > 0$, whenever $||x_0 - x^{\varepsilon}|| < \delta_0$

$$\lim_{k\to\infty}\mathcal{X}(k,x_0)=x^{\varepsilon}$$

The set of x_0 for which the limit holds : **region of attraction**. The equilibrium is **globally asymptotically** stable if the region of attraction is **X**.

Definition

- non-negative
- decreasing (drift inequality)
- Frequently
 - > inf-compact : $\{x \in \mathbf{X} : V(x) \leq V(x^0)\} \subset \mathbf{X}$ bounded $\forall x^0 \in \mathbf{X}$
 - > coercive : $\lim_{\|x\|\to\infty} V(x) = \infty$

Total cost is Lyapunov under mild conditions

Suppose c and J are **non-negative** and **finite valued**, then

- J(x(k)) is non-increasing and $\lim_{k\to\infty} J(x(k)) = 0, \forall x_0,$
- If J is also continuous, inf-compact, and vanishes only at x^{ε} , then $\forall x, \lim_{k \to \infty} x(k) = x^{\varepsilon}$

2.4.3 Lyapunov functions

Drift inequality considered

Poisson's inequality

$$V(F(x)) \leq V(x) - c(x) + \hat{\eta}, \hat{\eta} \geq 0$$

Proposition 2.4

Suppose the inequality holds for $\hat{\eta} = 0$, V is **continuous**, **inf-compact**, with a **unique minimum** at x^{ε} . Then, the equilibrium is stable.

Comparison theorem (2.5)

Poisson's inequality implies the following bounds

• For each
$$N \ge 1$$
 and $x = x(0)$

$$V(x(N)) + \sum_{k=0}^{N-1} c(x(k)) \leq V(x) + N\hat{\eta}$$

- If $\hat{\eta} = 0$, then $J(x) \leq V(x), \forall x$
- Suppose that
 η̂ = 0, V, c are continuous. Suppose also c is
 inf-compact, vanishes only at x^ε. Then the equilibrium is
 globally asymptotically stable.

Can we reach equality ?

Yes ! Proposition 2.6: If

•
$$V(F(x)) = V(x) - c(x)$$

- J is continuous, inf-compact, and vanishes only at x^{ε}
- V is continuous

Then
$$J(x) = V(x) - V(x^{\varepsilon})$$

Assumptions

•
$$x(k+1) = Fx(k)$$

•
$$c(x) = x^T S x, S \in S^+(\mathbb{R}^n)$$

Lyapunov equation

$$M = S + F^T M F$$

Proposition 2.10

The following are equivalent

- The origin is locally asymptotically stable
- The origin is globally asymptotically stable
- The Lyapunov equation admits a solution $M \ge 0$ for any $S \ge 0$
- Each eigenvalue λ of F satisfies $|\lambda| < 1$

First summary

We have seen

• the State space model (observations from inputs)

$$\begin{cases} x(k+1) = Fx(k) + Gu(k) \\ x(0) = x_0 \\ y(k) = Hx(k) + Eu(k) \end{cases}$$

• In some case, explicit **policy** (inputs from observations)

$$u(k) = -Kx(k)$$
, K : gain matrix

• Tools for assessing stability (cf. total cost and Lyapunov functions)

> cf :Each eigenvalue λ of F – GK satisfies $|\lambda| < 1$

Actors and critics

- actors : $\{\phi^{\theta}: \theta \in \mathbb{R}^d\}$
- critics computes exactly J_{θ}
- actor-critic algorithm

$$heta^* = rgmin_{ heta} < {m v}, J_{ heta} >$$

Temporal differences

How can we estimate a value function without a model ?

$$\mathcal{D}_{k+1}(\hat{J}) := -\hat{J}(x(k)) + \hat{J}(x(k+1)) + c(x(k), u(k)), k \ge 0,$$

ith $u(k) = \phi^{\theta}(x(k))$

W

How ignoring noise ?

Activités	📮 Visionneur de documents 👻	4 oct. 18:17						
	🗈 18 sur 457 🖌	RL_Book_Meyn.pdf						
?	Annotation Surligner du texte	m both the feedforward and feedback components of the control system. The hnal input is often defined as the sum of two components:						
•		$u(k) = u_{fl}(k) + u_{fb}(k)$ (2.1) where in the shopping problem, u_{ff} quantifies the results of planning before heading to the mar- ket (perhaps with updates every 20 minutes), and u_{a} is the second-by-second operation of the						
0		automobile. The dream of RL is to mimic and surpass the skill in which humans create an internal algorithm ϕ_i and use it to skillfully navigate through complex and unpredictable environments.						
s S		$ \begin{array}{c} r \\ \hline \textbf{Tajectory} \\ \textbf{Generation} \\ x_{ref} & \textcircled{e} \\ \hline \textbf{Feedback} \\ \textbf{With} \\ \textbf{With} \\ \textbf{With} \\ \textbf{W} \\$						
		Figure 2.1: Control systems contain purely reactive feedback, as well as planning that is regularly updated. This represents two layers of feedback, differentiated in part by speed of response to new observations. These observations are often limited, so that we require estimate \$\vec{x}\$ of a partially "hiddin" state process \$\vec{x}\$.						
	+ -	Fig. 2.1 shows a block diagram typically used in model-based control design, and illustrates a few common design choices: there is a state to be estimated using an observer , with state estimates denoted \hat{x} . The block denoted trajectory generation constructs two signals: the feedforward component of the control, and also a reference $x_{\rm ref}$ that an internal state should track (the state is not state). The block denotes the state is not state in the track of the state is not state in the state is not state.						

Exercise 2.3

One example : exercise 2.3

Activités	📮 Visionneur de documents 👻	3 oct. 22:22								
2_	🖿 52 sur 457 🖍	RL_Book_Meyn.pdf Q	-	6	8					
	Annotation Surligner du texte									
\sim	And Andrews Patrices	2.3 Stabilizability. The state space model is called stabilizable if there is a feedback law $u(k)$ $\phi(x(k))$ that results in a closed loop system that is globally asymptotically stable. T	= 'he							
	49	example in Exercise 2.2 is not stabilizable.								
	23 9	Perform the following calculations with $F = \begin{bmatrix} 2 & 1 \\ 0 & 0.5 \end{bmatrix}$ and $G = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$:								
•	Responses (Constraint) Responses (Constraint) Responses (Constraint)	(a) Design the gain in u(k) = -Kx(k) so that F - GK has repeated eigenvalues (you were that you do not have choice in the value). Is K unique?	vill							
	SO	(b) Solve the Lyapunov equation eq. (2.43) with F replaced by the closed-loop mat F - GK from (a), and with S = I.	rix							
?		(c) Denote y(k) = x ₁ (k) = Hx(k). Suppose that our goal is to ensure that y(k) → r k → ∞, with r a constant. Modify your control design as follows:	as							
		$u(k) = -K_1 \tilde{y}(k) - K_2 x_2(k) - K_3 z^l(k)$								
		where $\tilde{y}(k) = y(k) - r$ and $z^{i}(k+1) = z^{i}(k) + \tilde{y}(k)$ (review discussion surrounding eqn. (2.11))).							
0	51	Find $K_3 > 0$ sufficiently small so that the system remains stable for $0 \le K_3 \le K_3$. This possible because of the inherent robustness of feedback (you verified stability when $K_3 =$; is)).							
	 Name State of the second second	(d) Obtain a state space model for the system in closed loop, with augmented state x ^a (x, x ₀ , z ^I):	=							
	A second and a sec	(x_1, x_2, ∞) . $x^a(k+1) = F^a x^a(k) + G^a r$								
S	S2									
	88 F 🖉 🛄									

One example : exercise 2.3

One example : exercise 2.3

roots behaviour

convergence simulations with $K_3 = 0.01, K_2 = 1, r = 0.5, x_1^0 = 20, x_2^0 = 2, x_3^0 = 4$

Figure: $k \rightarrow x_1^k, k \in \{1, ..., 1000\}$

Conclusion

• the State space model (observations from inputs)

$$\begin{cases} x(k+1) = Fx(k) + Gu(k) \\ x(0) = x_0 \\ y(k) = Hx(k) + Eu(k) \end{cases}$$

• In some case, explicit **policy** (inputs from observations)

$$u(k) = -Kx(k), K$$
 : gain matrix

• Tools for assessing stability (cf. total cost and Lyapunov functions)

> cf :Each eigenvalue λ of F – GK satisfies $|\lambda| < 1$

Conclusion

From Control to RL

- Actor-critic
- TD Learning
- Exploration and exploitation paradigm

Taking into account of noise

- architecture not sensitive (wrt disturbance class)
- assumptions (frequency domains, Lyapunov drift inequalities etc.)

