

Reading group 1 Control systems and RL

Antoine Bambade

Willow and Sierra teams

Contents

01.. [Introduction](#page-2-0) 02.. [Control "Crash Course"](#page-5-0) 03.. [Exercise 2.3](#page-25-0) 04.. [Conclusion](#page-30-0)

[Introduction](#page-2-0)

Introduction

Objective

• Discover or deepen RG topic

Support

- "Control systems and Reinforcement Learning", Sean Meyn
- Discussion
- papers
- talks
- \bullet ...

Organization

[Control "Crash](#page-5-0) [Course"](#page-5-0)

Control "Crash Course"

Plan

- 1) Notations
- 2) What to do ?
	- > modeling
	- > assessing performance
- 3) RL "main" algorithms

Notations

- ff : feedforward control
- \bullet *u* : inputs
- $y :$ observations
- \bullet ϕ : policy

Parameters

- \bullet ff \cdot feedforward control
- \bullet *u* : inputs
- \bullet y : observations
- ϕ : policy

Often : $u(k) = u_{ff}(k) + u_{fd}(k)$

2.1 : You have a Control Problem

Parameters

- ff · feedforward control
- \bullet *u* : inputs
- \bullet y : observations
- \bullet ϕ : policy

Often : $u(k) = u_{ff}(k) + u_{fd}(k)$

What to do about it?

• 1) Ceate model

$$
y(k) = G_k(u(0), u(1), ..., u(k)), k \ge 0
$$

- 2) Design policy ϕ
- 3) Assess performance

Objective

Design a **simple** and **faithful** model.

$$
y(k) = G_k(u(0), u(1), ..., u(k)), k \ge 0
$$

Examples of models

• Linear and Time invariant (LTI)

$$
y(k)=\sum_{i=0}^k b_i u(k-i), k\geq 0
$$

• Auto-Regressive Moving-Average (ARMA)

$$
y(k) = -\sum_{i=1}^{N} a_i y(k-i) + \sum_{i=0}^{M} b_i u(k-i)
$$

Definition

- State space **X**
- Action space **U**
- Observation space Y
- State equations

$$
\begin{cases}\nx(k+1) = F(x(k), u(k)) \\
x(0) = x_0 \\
y(k) = G(x(k), u(k))\n\end{cases}
$$

Remarks

- state definition must simplify control design
- Unknown quantities can be learned with input-output measurements

Definition

- **X**,**U**,**Y** usually subsets of euclidean spaces
- State equations

$$
\begin{cases}\nx(k+1) = Fx(k) + Gu(k) \\
x(0) = x_0 \\
y(k) = Hx(k) + Eu(k)\n\end{cases}
$$

Linear State feedback

$$
u(k) = -Kx(k), K: gain matrix
$$

Objectives

Evaluate

- long-run behavior of state process
- metric performance (total cost)

Plan

- definitions (total cost, equilibria)
- Stability results (discrete, continuous case)
- Application (linear case)

2.4.1 Total cost

Total cost

$$
J(x) = \sum_{k=0}^{\infty} c(x(k)), x(0) = x \in \mathbf{X}
$$

- If J is finite, stability typically guaranteed
- related to average cost (optimal control)
- "forward looking"

Definition : stable in the sense of Lyapunov

The equilibrium x^{ε} is stable in the sense of Lyapunov if for all ε , there exists $\delta > 0$ such that if $||x_0 - x^{\varepsilon}|| < \delta$, then

$$
\|\mathcal{X}(k,x_0)-\mathcal{X}(k,x^{\varepsilon})\|<\varepsilon, \text{ for all } k\geq 0
$$

Asymptotic Stability

An equilibrium x^{ε} is said to be asaymptotically stable if x^{ε} is stable in the sense of Lyapunov and for some $\delta_0 > 0$, whenever $||x_0 - x^{\varepsilon}|| < \delta_0$

$$
\lim_{k\to\infty}\mathcal{X}(k,x_0)=x^\varepsilon
$$

The set of x_0 for which the limit holds : **region of attraction**. The equilibrium is **globally asymptotically** stable if the region of attraction is **X**.

2.4.3 Lyapunov functions

Definition

- non-negative
- decreasing (drift inequality)
- Frequently
	- $\mathcal{C}>\mathcal{C}$ inf-compact $:~\{x\in\mathbf{X}:~V(x)\leq V(x^{0})\}\subset\mathbf{X}$ bounded $\forall x^{0}\in\mathbf{X}$
	- > coercive : $\lim_{\|x\| \to \infty} V(x) = \infty$

Total cost is Lyapunov under mild conditions

Suppose c and J are **non-negative** and **finite valued**, then

- $J(x(k))$ is non-increasing and $\lim_{k\to\infty} J(x(k)) = 0, \forall x_0$,
- If J is also **continuous**, **inf-compact**, and **vanishes** only at x^{ε} , then $\forall x, \lim_{k \to \infty} x(k) = x^{\varepsilon}$

2.4.3 Lyapunov functions

Drift inequality considered

Poisson's inequality

$$
V(F(x)) \leq V(x) - c(x) + \hat{\eta}, \hat{\eta} \geq 0
$$

Proposition 2.4

Suppose the inequality holds for $\hat{\eta} = 0$, V is **continuous**, **inf-compact**, with a **unique minimum** at x^{ε} . Then, the equilibrium is stable.

2.4.3 Lyapunov functions

Comparison theorem (2.5)

Poisson's inequality implies the following bounds

• For each $N \geq 1$ and $x = x(0)$

$$
V(x(N)) + \sum_{k=0}^{N-1} c(x(k)) \leq V(x) + N\hat{\eta}
$$

- If $\hat{\eta} = 0$, then $J(x) \leq V(x)$, $\forall x$
- Suppose that $\hat{\eta} = 0$, V, c are **continuous**. Suppose also c is inf-compact, vanishes only at x^ε. Then the equilibrium is globally asymptotically stable.

Can we reach equality ?

Yes ! Proposition 2.6: If

•
$$
V(F(x)) = V(x) - c(x)
$$

- J is **continuous**, **inf-compact**, and vanishes **only at** x ε
- \bullet V is continuous

Then
$$
J(x) = V(x) - V(x^{\epsilon})
$$

Assumptions

- $x(k + 1) = Fx(k)$
- $c(x) = x^T S x, S \in \mathcal{S}^+(\mathbb{R}^n)$

Lyapunov equation

$$
M=S+\digamma^T M F
$$

Proposition 2.10

The following are equivalent

- The origin is locally asymptotically stable
- The origin is globally asymptotically stable
- The Lyapunov equation admits a solution $M > 0$ for any $S > 0$
- Each eigenvalue λ of F satisfies $|\lambda| < 1$

First summary

We have seen

• the **State space model** (observations from inputs)

$$
\begin{cases}\nx(k+1) = Fx(k) + Gu(k) \\
x(0) = x_0 \\
y(k) = Hx(k) + Eu(k)\n\end{cases}
$$

• In some case, explicit **policy** (inputs from observations)

$$
u(k) = -Kx(k), K : gain matrix
$$

• Tools for assessing stability (cf. total cost and Lyapunov functions)

> cf : Each eigenvalue λ of F − GK satisfies $|\lambda|$ < 1

Actors and critics

- actors : $\{\phi^{\theta} : \theta \in \mathbb{R}^d\}$
- critics computes exactly J_{θ}
- actor-critic algorithm

$$
\theta^* = \argmin_\theta <\mathsf{v}, J_\theta>
$$

Temporal differences

How can we estimate a value function without a model ?

$$
\mathcal{D}_{k+1}(\hat{J}) := -\hat{J}(x(k)) + \hat{J}(x(k+1)) + c(x(k), u(k)), k \ge 0,
$$

with $u(k) = \phi^{\theta}(x(k))$

How ignoring noise ?

[Exercise 2.3](#page-25-0)

roots behaviour

Figure: roots of $\lambda^2 - \frac{3}{2}\lambda + 0.5 - K_3, K_3 \in [0.01, 0.2]$

convergence simulations with $K_3 = 0.01, K_2 = 1, r = 0.5, x_1^0 = 20, x_2^0 = 2, x_3^0 = 4$

Figure: $k \to x_1^k, k \in \{1, ..., 1000\}$

Conclusion

• the **State space model** (observations from inputs)

$$
\begin{cases}\nx(k+1) = Fx(k) + Gu(k) \\
x(0) = x_0 \\
y(k) = Hx(k) + Eu(k)\n\end{cases}
$$

• In some case, explicit **policy** (inputs from observations)

$$
u(k) = -Kx(k), K: gain matrix
$$

• Tools for assessing stability (cf. total cost and Lyapunov functions)

> cf : Each eigenvalue λ of F − GK satisfies $|\lambda|$ < 1

Conclusion

From Control to RL

- Actor-critic
- TD Learning
- Exploration and exploitation paradigm

Taking into account of noise

- architecture not sensitive (wrt disturbance class)
- assumptions (frequency domains, Lyapunov drift inequalities etc.)

