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Introduction

Objective
• Discover or deepen RG topic

Support
• ”Control systems and Reinforcement Learning”, Sean Meyn
• Discussion
• papers
• talks
• ...
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Organization
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Control ”Crash
Course”
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Control ”Crash Course”

Plan
• 1) Notations
• 2) What to do ?

> modeling
> assessing performance

• 3) RL ”main” algorithms
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2.1 : You have a Control Problem

Notations
• ff : feedforward control
• u : inputs
• y : observations
• φ : policy
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2.1 : You have a Control Problem

Parameters
• ff : feedforward control
• u : inputs
• y : observations
• φ : policy

Often : u(k) = uff (k) + ufd(k)
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2.1 : You have a Control Problem

Parameters
• ff : feedforward control
• u : inputs
• y : observations
• φ : policy

Often : u(k) = uff (k) + ufd(k)

What to do about it?
• 1) Ceate model

y(k) = Gk(u(0), u(1), ..., u(k)), k ≥ 0

• 2) Design policy φ
• 3) Assess performance
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2.3 State Space Models
Objective
Design a simple and faithful model.

y(k) = Gk(u(0), u(1), ..., u(k)), k ≥ 0

Examples of models
• Linear and Time invariant (LTI)

y(k) =
k∑

i=0
bi u(k − i), k ≥ 0

• Auto-Regressive Moving-Average (ARMA)

y(k) = −
N∑

i=1
ai y(k − i) +

M∑
i=0

bi u(k − i)
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2.3 State Space Models

Definition
• State space X
• Action space U
• Observation space Y
• State equations 

x(k + 1) = F (x(k), u(k))
x(0) = x0
y(k) = G(x(k), u(k))
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2.3.2 State augmentation and learning

Remarks
• state definition must simplify control design
• Unknown quantities can be learned with input-output

measurements
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2.3.3 Linear state space model

Definition
• X,U,Y usually subsets of euclidean spaces
• State equations

x(k + 1) = Fx(k) + Gu(k)
x(0) = x0
y(k) = Hx(k) + Eu(k)

Linear State feedback

u(k) = −Kx(k), K : gain matrix
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2.4 Stability and Performance

Objectives
Evaluate
• long-run behavior of state process
• metric performance (total cost)

Plan
• definitions (total cost, equilibria)
• Stability results (discrete, continuous case)
• Application (linear case)

15 -Reading Group 1- Antoine Bambade



2.4.1 Total cost

Total cost

J(x) =
∞∑

k=0
c(x(k)), x(0) = x ∈ X

• If J is finite, stability typically guaranteed
• related to average cost (optimal control)
• ”forward looking”
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2.4.2 Stability of equilibra

Definition : stable in the sense of Lyapunov
The equilibrium xε is stable in the sense of Lyapunov if for all ε,
there exists δ > 0 such that if ‖x0 − xε‖ < δ, then

‖X (k, x0)−X (k, xε)‖ < ε, for all k ≥ 0

Asymptotic Stability
An equilibrium xε is said to be asaymptotically stable if xε is stable
in the sense of Lyapunov and for some δ0 > 0, whenever
‖x0 − xε‖ < δ0

lim
k→∞

X (k, x0) = xε

The set of x0 for which the limit holds : region of attraction.
The equilibrium is globally asymptotically stable if the region of
attraction is X.
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2.4.3 Lyapunov functions

Definition
• non-negative
• decreasing (drift inequality)
• Frequently

> inf-compact : {x ∈ X : V (x) ≤ V (x0)} ⊂ X bounded ∀x0 ∈ X
> coercive : lim‖x‖→∞ V (x) =∞

Total cost is Lyapunov under mild conditions
Suppose c and J are non-negative and finite valued, then
• J(x(k)) is non-increasing and limk→∞ J(x(k)) = 0, ∀x0,
• If J is also continuous, inf-compact, and vanishes only at

xε, then ∀x , limk→∞ x(k) = xε
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2.4.3 Lyapunov functions

Drift inequality considered

Poisson’s inequality

V (F (x)) ≤ V (x)− c(x) + η̂, η̂ ≥ 0

Proposition 2.4
Suppose the inequality holds for η̂ = 0, V is continuous,
inf-compact, with a unique minimum at xε. Then, the
equilibrium is stable.
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2.4.3 Lyapunov functions

Comparison theorem (2.5)
Poisson’s inequality implies the following bounds
• For each N ≥ 1 and x = x(0)

V (x(N)) +
N−1∑
k=0

c(x(k)) ≤ V (x) + N η̂

• If η̂ = 0, then J(x) ≤ V (x), ∀x
• Suppose that η̂ = 0, V , c are continuous. Suppose also c is

inf-compact, vanishes only at xε. Then the equilibrium is
globally asymptotically stable.
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2.4.3 Lyapunov functions : comparison theorem

Can we reach equality ?
Yes ! Proposition 2.6: If
• V (F (x)) = V (x)− c(x)
• J is continuous, inf-compact, and vanishes only at xε

• V is continuous
Then J(x) = V (x)− V (xε)
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2.4.6 Linear state space models
Assumptions
• x(k + 1) = Fx(k)
• c(x) = xT Sx ,S ∈ S+(Rn)

Lyapunov equation

M = S + F T MF

Proposition 2.10
The following are equivalent
• The origin is locally asymptotically stable
• The origin is globally asymptotically stable
• The Lyapunov equation admits a solution M ≥ 0 for any

S ≥ 0
• Each eigenvalue λ of F satisfies |λ| < 1
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Partial conclusion

First summary
We have seen
• the State space model (observations from inputs)

x(k + 1) = Fx(k) + Gu(k)
x(0) = x0
y(k) = Hx(k) + Eu(k)

• In some case, explicit policy (inputs from observations)

u(k) = −Kx(k), K : gain matrix

• Tools for assessing stability (cf. total cost and Lyapunov
functions)
> cf :Each eigenvalue λ of F − GK satisfies |λ| < 1
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2.5 From Control Theory to RL

Actors and critics
• actors : {φθ : θ ∈ Rd}
• critics computes exactly Jθ
• actor-critic algorithm

θ∗ = argmin
θ

< v , Jθ >

Temporal differences
How can we estimate a value function without a model ?

Dk+1(Ĵ) := −Ĵ(x(k)) + Ĵ(x(k + 1)) + c(x(k), u(k)), k ≥ 0,

with u(k) = φθ(x(k))
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How ignoring noise ?
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One example : exercise 2.3
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One example : exercise 2.3

28 -Reading Group 1- Antoine Bambade



One example : exercise 2.3

roots behaviour

Figure: roots of λ2 − 3
2λ+ 0.5− K3,K3 ∈ [0.01, 0.2]
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One example : exercise 2.3

convergence simulations with
K3 = 0.01,K2 = 1, r = 0.5, x0

1 = 20, x0
2 = 2, x0

3 = 4

Figure: k→ xk
1 , k ∈ {1, ..., 1000}
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Conclusion

• the State space model (observations from inputs)
x(k + 1) = Fx(k) + Gu(k)
x(0) = x0
y(k) = Hx(k) + Eu(k)

• In some case, explicit policy (inputs from observations)

u(k) = −Kx(k), K : gain matrix

• Tools for assessing stability (cf. total cost and Lyapunov
functions)
> cf :Each eigenvalue λ of F − GK satisfies |λ| < 1
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Conclusion

From Control to RL
• Actor-critic
• TD Learning
• Exploration and exploitation paradigm

Taking into account of noise
• architecture not sensitive (wrt disturbance class)
• assumptions (frequency domains, Lyapunov drift inequalities

etc.)
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