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Introduction

Objective

e Discover or deepen RG topic

Support

Discussion

papers
talks
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e "Control systems and Reinforcement Learning”, Sean Meyn
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Control "Crash Course”

Plan

e 1) Notations
e 2) What to do ?

> modeling
> assessing performance

e 3) RL "main” algorithms

7
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2.1 : You have a Control Problem

Notations
e ff : feedforward control
e u : inputs
e y : observations
e ¢ : policy

7
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2.1 : You have a Control Problem

Parameters
e ff : feedforward control
e u: inputs
e y : observations
e ¢ : policy
Often : u(k) = ug(k) + us(k)

7
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2.1 : You have a Control Problem

Parameters
o ff . feedforward control
e u : inputs
e y : observations
e ¢ : policy
Often : u(k) = ug (k) + ug(k)

What to do about it?

e 1) Ceate model
y(k) = Gg(u(0), u(1),...,u(k)),k >0

e 2) Design policy ¢
e 3) Assess performance
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2.3 State Space Models

Objective
Design a simple and faithful model.

y(K) = Ge(u(0), (1), .., u(K)), k > 0
Examples of models
e Linear and Time invariant (LTI)

k

y(k) = biu(k — i),k >0

i=0

o Auto-Regressive Moving-Average (ARMA)

N M
y(k) = _Zai}’(k — i)+ Zbiu(k — i)
i—1 i=0

rd
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2.3 State Space Models

Definition

e State space X

e Action space U

e Observation space Y

e State equations
x(k +1) = F(x(k), u(k))
x(0) = xo
y(k) = G(x(k), u(k))
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2.3.2 State augmentation and learning

Remarks
e state definition must simplify control design

e Unknown quantities can be learned with input-output
measurements
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2.3.3 Linear state space model

Definition
e X,U,Y usually subsets of euclidean spaces

e State equations

x(k +1) = Fx(k) + Gu(k)
x(0) = xo
y(k) = Hx(k) + Eu(k)

Linear State feedback

u(k) = —Kx(k), K : gain matrix

7
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2.4 Stability and Performance

Objectives
Evaluate
e long-run behavior of state process

e metric performance (total cost)

Plan
e definitions (total cost, equilibria)
e Stability results (discrete, continuous case)

e Application (linear case)

7
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2.4.1 Total cost

Total cost

icx(k) )=x€eX

k=0
e If J is finite, stability typically guaranteed
e related to average cost (optimal control)

e "forward looking"
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2.4.2 Stability of equilibra

Definition : stable in the sense of Lyapunov

The equilibrium x¢ is stable in the sense of Lyapunov if for all ¢,
there exists 6 > 0 such that if || xo — x|| < 6, then

| X (k, x0) — X(k,x%)|| <e, forall k>0

Asymptotic Stability
An equilibrium x¢ js said to be asaymptotically stable if x* is stable
in the sense of Lyapunov and for some dg > 0, whenever
||X0 = XEH < do
lim X(k,xp) = x°
k—o00

The set of xo for which the limit holds : region of attraction.
The equilibrium is globally asymptotically stable if the region of
attraction is X.

rd
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2.4.3 Lyapunov functions

Definition

e non-negative
e decreasing (drift inequality)
e Frequently

> inf-compact : {x € X: V(x) < V(x°)} C X bounded ¥x° € X
> coercive : lim| 00 V(X) = 00

Total cost is Lyapunov under mild conditions
Suppose ¢ and J are non-negative and finite valued, then
e J(x(k)) is non-increasing and limk_,o, J(x(k)) = 0,Vxo,
e If J is also continuous, inf-compact, and vanishes only at
x%, then Vx, limy_ o x(k) = x¢

rd
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2.4.3 Lyapunov functions

Drift inequality considered
Poisson’s inequality
V(F(x)) < V(x) = c(x) + 1,71 = 0

Proposition 2.4

Suppose the inequality holds for i = 0, V is continuous,
inf-compact, with a unique minimum at x°. Then, the
equilibrium is stable.

lrn
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2.4.3 Lyapunov functions

Comparison theorem (2.5)
Poisson'’s inequality implies the following bounds
e Foreach N > 1 and x = x(0)

N-1
V(x(N)+ > e(x(k)) < V(x) + Nij
k=0

e Iff)=0, then J(x) < V(x),V¥x

e Suppose that j =0, V, ¢ are continuous. Suppose also c is
inf-compact, vanishes only at x°. Then the equilibrium is
globally asymptotically stable.
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2.4.3 Lyapunov functions : comparison theorem

Can we reach equality ?
Yes ! Proposition 2.6: If
o V(F(x)) = V(x) = c(x)
e J is continuous, inf-compact, and vanishes only at x°
e V is continuous
Then J(x) = V(x) — V(x%)

s
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2.4.6 Linear state space models

Assumptions
o x(k+1) = Fx(k)
e c(x) =x"5x,5 € ST(R")

Lyapunov equation
M=S+FTMF

Proposition 2.10

The following are equivalent
e The origin is locally asymptotically stable
e The origin is globally asymptotically stable

e The Lyapunov equation admits a solution M > 0 for any
5$>0

e Each eigenvalue \ of F satisfies |\| < 1

rd
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Partial conclusion

First summary
We have seen

o the State space model (observations from inputs)

x(k +1) = Fx(k) + Gu(k)
x(0) = xp
y(k) = Hx(k) + Eu(k)

o In some case, explicit policy (inputs from observations)
u(k) = —Kx(k), K : gain matrix

e Tools for assessing stability (cf. total cost and Lyapunov
functions)

> cf :Each eigenvalue X of F — GK satisfies |\| < 1

rd
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2.5 From Control Theory to RL

Actors and critics
e actors : {¢?: 0 € RY}
e critics computes exactly Jy

e actor-critic algorithm

0" = argmin < v, Jy >
0

Temporal differences

How can we estimate a value function without a model ?
Dis1(J) == =J(x(k)) + J(x(k + 1)) + c(x(k), u(k)), k > 0,
with u(k) = ¢%(x(k))

rd
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How ignoring noise ?

4oct. 18

RL_Book_Meyn.pdf

Annotation

surligner du texte
m both the teedforward and teedback components of the control s
defined as the sum of two components:

stem. Lhe final mput 15 often

u(k) = ug(k) + up(k) (2.1)

the results of planning before heading to the mar-
ccond operation of the

where in the shopping problem, uy quantif
ket (perhaps with updates every 20 minutes), and ug is the second-b
automobile.

The dream of RL is to mimic and surpass the skill in which humans create an internal algorithm

¢, and use it to skillfully navigate through complex and unpredictable environments.

g

T Trajectory

Generation | ret o State il
; Feedback

Figure 2.1: Control systems contain purely reactive feedback, as well as planning that is regularly updated. This
represents two layers of feedback, differentiated in part by speed of response to new observations. These observations
are often limited, so that we require estimates 7 of a partially “hidden” state process x

a few

Fig. 2.1 shows a block diagram typically used in model-based control design, and illustrates
= common design choices: there is a state to be estimated using an observer, with state estimates
denoted 7. The block denoted trajectory generation constructs two signals: the feedforward

component of the control, and also a reference z,.f that an internal state should track (the state
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Annotation
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One example : exercise 2.3

3oct. 2222

RL_Book_Meyn.pdf

Stabilizability. The state space model is called stabilizable if there is a feedback law u(k) =
$(a(k)) that results in a closed loop system that is globally asymptotically stable. The
example in Exer 2 is not stabilizable.

Perform the following calculations with F = [ﬁ l)l")} and G = m
(a) Design the gain in u(k) = —Kaz(k) so that F — GK has repeated eigenvalues (you will
see that you do not have choice in the value). Is K unique?
(b)  Solve the Lyapunov equation eq. (2.43) with F replaced by the closed-loop matrix
F — GK from (a), and with §
(c) Denote y(k) = z1(k) = Ha(k). Suppose that our goal is to ensure that y(k) — r as
k — oo, with r a constant. Modify your control design as follows:

u(k)
where §(k) = y(k) —r and 2/(k+1) = z/(k) +§(k) (review discussion surrounding eqn. (2.11)).
Find K3 > 0 sufficiently small so that the system remains stable for 0 < K3 < Kj3. This is
possible because of the inherent robustness of feedback (you verified stability when Kj = 0).

—Kui(k) - Kawa(k) — Ka2'(k)

(d) Obtain a state space model for the system in closed loop, with augmented state 2 =
(a1, 72, 2'):

z%(k+1) = F'z" (k) + Gr



One example : exercise 2.3

3oct. 22130

RL_Book_Meyn.pdf

Annotation

surligner du texte

(a) Ubtam a state space model [or the system 1 ciosed 100p, WICh augmented state
(w1, 2, 2"):

(k4 1) = F'a® (k) + G*r
52

$3 x3 and G is 3 x 1. Plot the eigenvalues of F for a range of values of K3 > 0,
and comment on your findings.

where F i

Solve the equilibrium equation (for your favorite stable control design):

“2%(00) + Gr

Is your equilibrium (o) consistent with your control goals?

55 Obtain a plot of y(k) as a function of k, with initial condition 1(0) > r, and verify that it
= converges to the desired limit, and at the predicted rate.
RIEIRar SIS B S S B R R}

7
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One example : exercise 2.3

roots behaviour

roots real part

0.0 —_— -
.

00

0025 0050 0075 0100 0125 o150 0175 0200
S

Figure: roots of A2 — 3\ 4 0.5 — K3, K3 € [0.01,0.2]

s
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One example : exercise 2.3

convergence simulations with
K3 =0.01,K;=1,r=05x)=20,x) =2,x) = 4

Figure: k— xf, k € {1, ..., 1000}

7
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Conclusion

o the State space model (observations from inputs)

x(k +1) = Fx(k) + Gu(k)
x(0) = xo
y(k) = Hx(k) + Eu(k)

e In some case, explicit policy (inputs from observations)
u(k) = —Kx(k), K : gain matrix

e Tools for assessing stability (cf. total cost and Lyapunov
functions)

> cf :Each eigenvalue X of F — GK satisfies |\| < 1

rd
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Conclusion

From Control to RL
e Actor-critic
e TD Learning
e Exploration and exploitation paradigm

Taking into account of noise

e architecture not sensitive (wrt disturbance class)

e assumptions (frequency domains, Lyapunov drift inequalities
etc.)

s
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