ProxQP: Yet another Quadratic Programming Solver for Robotics and beyond

Antoine Bambade

Inria, ENS de Paris, ENPC

a joint work with Sarah El-Kazdadi, Adrien Taylor and Justin Carpentier

Introduction

Convex Quadratic Program (QP)

$$\min_{x \in \mathbb{R}^n} \underbrace{\frac{1}{2} x^\top H x + q^\top x}_{:=f(x)}$$

s.t.
$$Cx - u \leq 0$$
.

$$H \in \mathcal{S}_{+}(\mathbb{R}^n)$$
, $C \in \mathbb{R}^{n_i \times n}$

Convex QP is a core modelling tool of robotics:

- Friction-less unilateral contact modelling
- Constrained forward dynamics
- Inverse kinematics and dynamics
- Legged locomotion
- Constrained optimal control
- ..

Introduction

Current QP solvers have trouble being on the same time accurate, fast and numerically robust.

QP solvers	Method used	Limitations
Mosek, Gurobi	Interior Point	No warm-start
OSQP	ADMM	Accuracy to low threshold
quadprog, qpOASES	Active set	Robustness

The Augmented Lagrangian

$$\mathcal{L}_{A}(x, z; \mu) \stackrel{\text{def}}{=} f(x) + \frac{1}{2\mu} \left(\| [Cx - u + \mu z]_{+} \|_{2}^{2} - \| \mu z \|_{2}^{2} \right)$$

Smoothed and shifted penalization

Magnus Hestenes

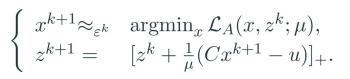
Michael J.D. Powell

The Augmented Lagrangian

$$\mathcal{L}_A(x, z; \mu) \stackrel{\text{def}}{=} f(x)$$

$$+ \frac{1}{2\mu} \left(\| [Cx - u + \mu z]_+ \|_2^2 - \|\mu z\|_2^2 \right)$$

Method of Multipliers



Magnus Hestenes

Michael J.D. Powell

The Augmented Lagrangian

$\mathcal{L}_{A}(x,z;\mu) \stackrel{\text{def}}{=} f(x)$ $+ \frac{1}{2\mu} \Big(\| [Cx - u + \mu z]_{+} \|_{2}^{2} - \| \mu z \|_{2}^{2} \Big)$ $\Phi_{\mu,\rho}^{k}(x) \stackrel{\text{def}}{=} \mathcal{L}_{A}(x,z^{k};\mu) + \frac{\rho}{2} \| x - x^{k} \|_{2}^{2}$

The Proximal Augmented Lagrangian

$$\Phi_{\mu,\rho}^k(x) \stackrel{\text{def}}{=} \mathcal{L}_A(x, z^k; \mu) + \frac{\rho}{2} ||x - x^k||_2^2$$

Proximal term

Method of Multipliers

Proximal Method of Multipliers

$$\begin{cases} x^{k+1} \approx_{\varepsilon^k} & \operatorname{argmin}_x \mathcal{L}_A(x, z^k; \mu), \\ z^{k+1} = & [z^k + \frac{1}{\mu} (Cx^{k+1} - u)]_+. \end{cases} \begin{cases} x^{k+1} \approx_{\varepsilon^k} & \operatorname{argmin}_x \Phi_{\mu, \rho}^k(x), \\ z^{k+1} = & [z^k + \frac{1}{\mu} (Cx^{k+1} - u)]_+. \end{cases}$$

R. Tyrrell Rockafellar

The Augmented Lagrangian

Lagrangian

The Proximal Augmented

$$\mathcal{L}_{A}(x,z;\mu) \stackrel{\text{def}}{=} f(x) \qquad \Phi_{\mu,\rho}^{k}(x) \stackrel{\text{def}}{=} \mathcal{L}_{A}(x,z^{k};\mu) + \frac{\rho}{2} \|x - x^{k}\|_{2}^{2} \qquad \mathcal{M}_{\mu,\rho}^{k}(x,z) := \Phi_{\mu,\rho}^{k}(x) + \frac{1}{2\mu} \left(\|[Cx - u + \mu z]_{+}\|_{2}^{2} - \|\mu z\|_{2}^{2} \right) \qquad + \frac{1}{2\mu} \|[Cx - u + z^{k}\mu]_{+} - z\mu\|_{2}^{2}.$$

$$(x) \stackrel{\text{def}}{=} \mathcal{L}_A(x, z^k; \mu) + \frac{\rho}{2} ||x - x^k||_2^2$$

Method of Multipliers

Proximal Method of Multipliers

$$\begin{cases} x^{k+1} \approx_{\varepsilon^k} & \operatorname{argmin}_x \mathcal{L}_A(x, z^k; \mu), \\ z^{k+1} = & [z^k + \frac{1}{\mu} (Cx^{k+1} - u)]_+. \end{cases} \begin{cases} x^{k+1} \approx_{\varepsilon^k} & \operatorname{argmin}_x \Phi_{\mu, \rho}^k(x), \\ z^{k+1} = & [z^k + \frac{1}{\mu} (Cx^{k+1} - u)]_+. \end{cases}$$

First contribution:

the Proximal Primal Dual **Augmented Lagrangian**

$$\mathcal{M}_{\mu,\rho}^{k}(x,z) := \Phi_{\mu,\rho}^{k}(x) + \frac{1}{2\mu} \|[Cx - u + z^{k}\mu]_{+} - z\mu\|_{2}^{2}$$

More robust and accurate

The Augmented Lagrangian

The Proximal Augmented Lagrangian

the Proximal Primal Dual **Augmented Lagrangian**

$$\mathcal{L}_{A}(x,z;\mu) \stackrel{\text{def}}{=} f(x) \qquad \Phi_{\mu,\rho}^{k}(x) \stackrel{\text{def}}{=} \mathcal{L}_{A}(x,z^{k};\mu) + \frac{\rho}{2} \|x - x^{k}\|_{2}^{2} \qquad \mathcal{M}_{\mu,\rho}^{k}(x,z) := \Phi_{\mu,\rho}^{k}(x) + \frac{1}{2\mu} \left(\|[Cx - u + \mu z]_{+}\|_{2}^{2} - \|\mu z\|_{2}^{2} \right) \qquad + \frac{1}{2\mu} \|[Cx - u + z^{k}\mu]_{+} - z\mu\|_{2}^{2}.$$

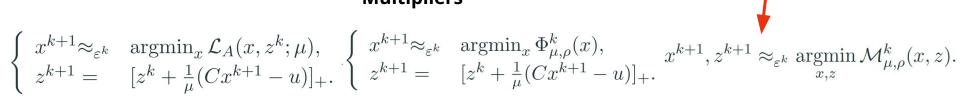
$$\stackrel{\text{def}}{=} \mathcal{L}_A(x, z^k; \mu) + \frac{\rho}{2} ||x - x^k||$$

$$\mathcal{M}_{\mu,\rho}^{k}(x,z) := \Phi_{\mu,\rho}^{k}(x) + \frac{1}{2\mu} \| [Cx - u + z^{k}\mu]_{+} - z\mu \|_{2}^{2}$$

Method of Multipliers

Proximal Method of Multipliers

First step of ProxQP



ProxQP algorithm

```
while Stopping criterion not satisfied do
```

```
\hat{x}, \hat{z} \approx_{\varepsilon^k} \operatorname{argmin}_{x,z} \mathcal{M}_{\mu,\rho}^k(x,z);
     if ||[Cx^{k+1} - u]_+||_{\infty} \leqslant \eta_k then
           Accept multiplier \hat{z};
           Strictly decrease \varepsilon^k, \eta^k;
      else
            Keep previous multiplier z^k;
            Low decrease of \varepsilon^k, \eta^k;
            Strictly decrease \mu;
      end
end
```

Second contribution: mixing our new merit function with BCL

Bound Constrained Augmented Lagrangian (BCL) = **globalization strategy**

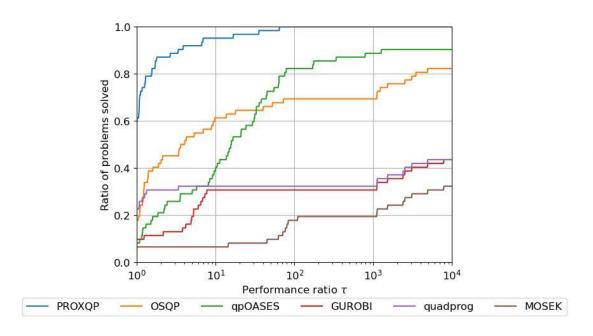
ProxQP solver implementation

- <u>Fast</u>: C++ implementation, using Eigen for efficient linear algebra
- <u>Scalable</u>: unique solver with 3 specialized backends (dense, sparse and very large matrices)
- <u>Easy to use</u>: API close to OSQP, with python bindings
- Open-source: BSD license

https://github.com/Simple-Robotics/proxsuite

Inverse kinematics (μ s) 167 \pm 93 24 \pm 7 Inverse dynamics (μ s) 441 \pm 193 25 \pm 6			OSQP		PROXQP		
Inverse dynamics (μ s) 441 \pm 193 25 \pm 6	Inverse kin	ematics $(\mu$ s $)$	167 \pm	93	24	± 7	
	Inverse dy	namics $(\mu$ s $)$	441 \pm	193	25	± 6	

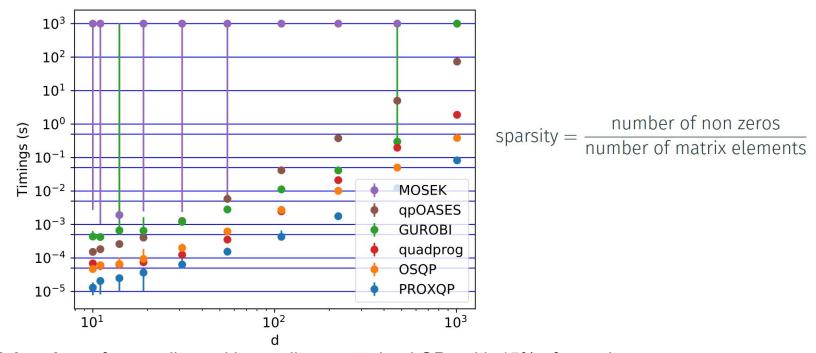
Solving times for controlling the center of mass of TALOS using Pinocchio library



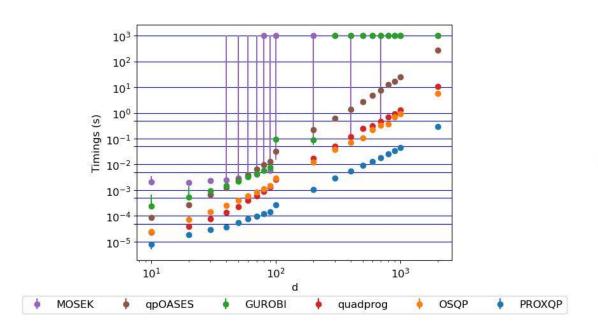
sparsity $\leq 10\%$

matrix dimensions ≤ 1000

Performance profiles for **very hard QPs** from the optimization community (**the higher the better**)



Solving times for equality and inequality constrained QPs with 15% of sparsity



Dense problems

matrix dimensions ≤ 1000

Solving times for **standard QPs** from the optimization community (**the lower the better**)

- New Augmented Lagrangian Algorithm
 - o new merit function
 - globalization strategy
- ProxQP = fast, robust, accurate and open source solver

Antoine Bambade

Inria, ENS de Paris, ENPC

https://github.com/Simple-Robotics/proxsuite

