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Quadratic programming layer pipeline

More recent literature considers differentiable optimization problems as layers.

Figure: Example of a Quadratic Programming Layer 
(with D nonsingular)

QPLayer - introduction
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QP layers in machine learning 

QPLayer - introduction

Convex QP layers performs better than 
a ConvNet for solving Sudokus.

Figure: Example of Sudoku.

1B. Amos, Z. Kolter (2021)

Figure: Training and test plots1.
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QP layers cons: limited trainable architecture

Figure: a LP layer. Nothing guarantees during training that the vector of 1 lies in the 
range space of At. 

QPLayer - introduction



Solution outline: ideal pipeline
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QPLayer - solution outline

Contribution:
Solving closest feasible QP using 

ProxQP

A. Chiche, J-C. Gilbert (2016)
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Contribution:
solving closest feasible QP using 

ProxQP

Contribution:
propose algorithms to differentiate 

through closest feasible QP solutions

Contribution:
QPLayer: A full differentiable pipeline 

in C++ connected with PyTorch.
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Software contribution

QPLayer - forward pass



The backward pass: differentiating closest QP solutions
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The backward pass: differentiating closest QP solutions

A classical technique: the Implicit Function Theorem. 

The map is path-differentiable.

E. Pauwels et al. (2019)
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Numerical benchmark: back to the Sodoku problem. 

QPLayer - benchmark

Convex QP layers performs better than 
a ConvNet for solving Sudokus.

Figure: Example of Sudoku.

1B. Amos, Z. Kolter (2021)

Figure: Training and test plots1.
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Loss comparison

QPLayer - benchmark
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● Methodology for learning new QP layers
○ IFT for closest feasible QPs
○ Extended conservative Jacobians

● QPlayer: open-source differentiable pipeline
○ Use Augmented-Lagrangian techniques
○ Connected with PyTorch

https://github.com/Simple-Robotics/proxsuite



Software contribution




