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Introduction: QP layers v.s. neural networks

Outputs of current learning pipelines are explicit function of the inputs.

 

Neural network

Parameters:
● trained: wt

● fixed: b

INPUT

x y*=tanh(wtx-b)

FORWARD 
PASS

y*

OUTPUT

LOSS TO MINIMIZE

L(y*)=||y*-ydesired||2

BACKWARD 
PASS

PARAMETER UPDATE

wt+1=wt-α

𝜕w 𝜕y* 𝜕w 
 𝜕L                  𝜕y* 𝜕L                  𝜕w 

 𝜕L                  

=

Figure: Example of a feedforward neural network.
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Introduction: QP layers v.s. neural networks

More recent literature considers differentiable optimization problems as
layers.

 

QP layer

Parameters:
● trained: Ct,zt,ht

● fixed: D

INPUT

x y*= argmin ||Dy-x||2
   y   

  s.t., Cty≤Ctzt+exp(ht) FORWARD 
PASS

y*

OUTPUT

LOSS TO MINIMIZE

L(y*)=||y*-ydesired||2

BACKWARD 
PASS

PARAMETERS UPDATE

zt+1=zt-α

ht+1=ht-α

Ct+1=Ct-α𝜕C 𝜕y* 𝜕C 
 𝜕L                  𝜕y* 𝜕L                  

=

𝜕z 𝜕y* 𝜕z 
 𝜕L                  𝜕y* 𝜕L                  

=

𝜕h 𝜕y* 𝜕h 
𝜕y* 𝜕L                  

=

𝜕C 
 𝜕L                  

𝜕z 
 𝜕L                  

𝜕h 
 𝜕L                   𝜕L                  

Figure: Example of a Quadratic Programming layer (with D nonsingular).
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Introduction: QP layers pros (representative power)

Why using such more complex architecture ?

For some class of layers, the representative power is similar to those
of standard Neural Networks,

Theorem (B. Amos & Z. Kolter (2021))

Let f : Rn −→ Rn be an elementwise piecewise linear function with k linear
regions. Then function can be represented as an OptNet layer using O(nk)
parameters. Additionally, the layer zi+1 = max(Wzi + b, 0) for W ∈ Rn×m,
b ∈ Rm can be represented by an OptNet layer with O(mn) parameters.
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Introduction: QP layers pros (representative power)

Why using such more complex architecture ?

For some class of layers, the representative power is similar to those
of standard Neural Networks,

For some optimization based problem, it performs better.
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QP layers in machine learning: example 1

Using a convex QP as a deep
learning layer performs better than a
ConvNet for solving Sudokus.

Figure: Example of Sudoku.

Figure: Sudoku Training plots1.

1
Brandon Amos and J. Zico Kolter (2021). OptNet:Differentiable Optimization

as a Layer in Neural Networks.
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Introduction: QP layers pros (practical speed)

Why using such more complex architecture ?

For some class of layers, the representative power is similar to those
of standard Neural Networks,

For some optimization based problem, it performs better,

Achievable practical use.
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Introduction: QP layers pros (practical speed)

Trick: use the Implicit Function Theorem.

min
x∈Rn

{
f (x ; θ) ≜

1

2
x⊤H(θ) x + x⊤g(θ)

}
s.t. C (θ) x ≤ u(θ),

(QP(θ))

Noting (x⋆(θ), z⋆(θ)) a solution
to (QP(θ)), applying the IFT
outputs:[

H C⊤

D(z⋆)C D(Cx⋆ − u)

] [
∂x⋆

∂θ
∂z⋆

∂θ

]
= −

[
∂H
∂θ x

⋆ + ∂g
∂θ + ∂C

∂θ

⊤
z⋆

D(z⋆)(∂C∂θ x
⋆ − ∂u

∂θ )

]
∂L
∂θ =

[
∂L
∂x
∂L
∂z

]⊤ [
∂x
∂θ
∂z
∂θ

]
= (−

[
H C⊤D(z⋆)
C D(Cx⋆ − u)

] [
dx
dz

]
)⊤

[
∂x
∂θ
∂z
∂θ

]
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Introduction: cons (limited trainable architectures)

Two issues

IFT assumptions (non
singularity of KKT matrix etc.),

Structural feasibility at training
and test time.

 

QP layer

Parameters:
● trained: At

INPUT

x y*∈ argmin x⋅y
   y   

  s.t., Aty=1 and y≥0. FORWARD 
PASS

y*

OUTPUT

Figure: A LP layer. Nothing guarantees
during training that the vector of 1 lies
in the range space of the At .
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Solution outline: ideal pipeline

General idea: consider a ”broader” problem.

Forward pass: solve the closest feasible QP.

Backward pass: differentiate through one solution.

 

QP layer

Parameters:
● trained: At

INPUT

x y*∈argmin x⋅y
   y   

  s.t., Aty=1+s* and y≥0.

FORWARD 
PASS

y*, s*

BACKWARD 
PASS

𝜕y*
 𝜕L                  

𝜕s*
 𝜕L                  

LOSS

L(x*,s*)=||y*-ydesired||2+||s*||2

Figure: General solution outline.
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Solution outline: plan

General plan:

Forward pass: solve the closest feasible QP.

Define the closest feasible problem.
Propose an efficient algorithm to solve it.

Backward pass: differentiate through one solution.

Prove applying the IFT makes sense.
Provide tractable algorithms.
In non differentiable case, provide alternatives.
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The closest feasible QP problem: definition

x⋆(θ) ∈ argmin
x∈Rn

{
f (x ; θ) ≜

1

2
x⊤H(θ) x + x⊤g(θ)

}
s.t. C (θ) x ≤ u(θ),

(QP(θ))

where H(θ) ∈ Sn
+(R), g(θ) ∈ Rn, C (θ) ∈ Rni×n and u(θ) ∈ Rni .

Assumption

H(θ) is symmetric positive definite in the direction of g(θ) or g(θ) is
orthogonal to the recession cone of QP(θ), i.e.,
g(θ) ⊥ C∞(θ) ≜ {y ∈ Rn|C (θ)[x + τy ] ≤ u(θ) s.t. C (θ)x ≤ u(θ), τ ≥ 0}.
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The closest feasible QP problem: definition

Under Assumption (1) the closest feasible problem (QP-H(θ)) is
well-posed:

s⋆(θ) = arg min
s∈Rni

1
2∥s∥

2
2

s.t. x⋆(θ), z⋆(θ) ∈ arg min
x∈Rn

max
z∈Rni

+

L(x , z , s; θ),
(QP-H(θ))

with L(x , z , s; θ) ≜ 1
2x

⊤H(θ) x + x⊤g(θ) + z⊤(C (θ)x − u(θ)− s)

Remark

s⋆ ≜ argmins∈R(C)+]−∞,u] ∥s∥22
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The closest feasible QP problem: solution method

The Augmented Lagrangian

LA(x , z ;µ) ≜ f (x)

+ 1
2µ(∥[Cx − u + µz ]+∥22 − ∥µz∥22)

The AL method

xk+1 = argmin
x

LA(x , z ;µ)

zk+1 = [ 1µ(Cx
k+1 − u) + zk ]+

Theorem (A. Chiche, JC Gilbert
(2016)1)

Under Assumption (1), the revised
AL algorithm does not terminate
with a direction of unboundedness
and generates a sequence {(xk , zk)}
converging towards a solution
to (QP-H(θ)).

Remark

(i) revised AL algorithm = modified
stopping criterion; (ii) exact AL
method!

1
Chiche, A., Gilbert, J. C. (2016). How the augmented Lagrangian algorithm

can deal with an infeasible convex quadratic optimization problem.
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The closest feasible QP problem: solution method in
practice

The ProxSuite library

29KU Leuven— Progress and prospects in optimization for Robotics — Justin Carpentier

ProxSuite
ADVANCED OPTIMIZERS FOR ROBOTICS AND BEYOND

✓ fast: C++ implementation, with homemade linear Cholesky solver 
✓ scalable: various backends for dense, sparse and matrix-free optimization 
✓ easy-to-use: API closed to OSQP, Python and Julia bindings 
✓ open-source: BSD-license, easily installable

github.com/Simple-Robotics/proxsuite

conda install -c conda-forge proxsuite
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Differentiating (QP-H(θ)) solutions: methodology

Analyze the properties of KKT map for (QP-H(θ)),

Extended Conservative Jacobian definition.

Practical algorithms.
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Differentiating (QP-H(θ)) solutions: KKT conditions
of (QP-H(θ))

G (x , z , t; θ) ≜

H(θ)x + g(θ) + C (θ)⊤z
C (θ)x − u(θ)− t
[[t]− + z ]+ − z

C (θ)⊤[t]+

 (G)

Lemma

It holds that (x⋆, z⋆, s⋆) solves QP-H(θ) iff there exists t⋆ ∈ Rni

s.t. G (x⋆, z⋆, t⋆; θ) = 0 and s⋆ = [t⋆]+.
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Differentiating (QP-H(θ)) solutions: path differentiability
of G

Lemma

G is path differentiable w.r.t. x⋆, z⋆ and t⋆. Furthermore, if H(θ), g(θ),
C (θ) and u(θ) are differentiable w.r.t. θ, then G is path differentiable
w.r.t. θ.

It means G has a conservative1 Jacobian. It is equivalent to having a
chain rule for the Clarke subdifferential

JaccG (w) ≜ conv{ lim
k−→∞

Jac G (wk) ∈ diffF ,wk −→ w},

with diffG the full measure set where G is differentiable, and Jac G the
standard Jacobian of G.

1
Bolte, J., Le, T., Pauwels, E., Silveti-Falls, T. (2021). Nonsmooth

implicit differentiation for machine-learning and optimization.
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Differentiating (QP-H(θ)) solutions: Extended
Conservative Jacobian

Let v⋆ = (x⋆, z⋆, t⋆) ∈ Rn × Rni
+ × Rni s.t. G (x⋆, z⋆, t⋆; θ) = 0.

(
∂x⋆

∂θ
,
∂z⋆

∂θ
,
∂t⋆

∂θ

)
∈ argmin

w

∥∥∥∥∂G (x⋆, z⋆, t⋆; θ)

∂v⋆
w +

∂G (x⋆, z⋆, t⋆; θ)

∂θ

∥∥∥∥2
2

.

Π∂t⋆

∂θ ∈ ∂s⋆

∂θ , with Π ∈ ∂([.]+)(t
⋆).
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Differentiating (QP-H(θ)) solutions: Extended
Conservative Jacobian

Why do we use a least-square ?

It makes sense in ”standard” cases:

If (QP-H(θ)) reduces to (QP(θ)) (i.e., feasible problem), and if the IFT
applies, we recover standard Jacobian.
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Differentiating (QP-H(θ)) solutions: Extended
Conservative Jacobian

Why do we use a least-square ?

It makes sense in ”standard” cases:

If (QP-H(θ)) reduces to (QP(θ)) (i.e., feasible problem), and if the IFT
applies, we recover standard Jacobian.
If (QP-H(θ)) is infeasible and satisfies non-singularity conditions for a
”conservative” IFT, we recover conservative Jacobians

Lemma

Let C (θ), u(θ) be differentiable w.r.t. θ, and H = 0, and g be fixed
w.r.t. θ and satisfying Assumption 1. If s⋆ > 0 and z⋆ = 0 (i.e., it does
not satisfy strict complementarity) and C is full row rank, then the ECJs
of x⋆, z⋆, t⋆, and s⋆ correspond to conservative Jacobians.
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Differentiating (QP-H(θ)) solutions: Extended
Conservative Jacobian

Why do we use a least-square ?

It makes sense in ”standard” cases:
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applies, we recover standard Jacobian.
If (QP-H(θ)) is infeasible and satisfies non-singularity conditions for a
”conservative” IFT, we recover conservative Jacobians

In non standard cases (i.e., IFT does not apply):

Solutions may still have a notion of derivatives
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Differentiating (QP-H(θ)) solutions: Extended
Conservative Jacobian

Why do we use a least-square ?

It makes sense in ”standard” cases:

If (QP-H(θ)) reduces to (QP(θ)) (i.e., feasible problem), and if the IFT
applies, we recover standard Jacobian.
If (QP-H(θ)) is infeasible and satisfies non-singularity conditions for a
”conservative” IFT, we recover conservative Jacobians

In non standard cases (i.e., IFT does not apply):

Solutions may still have a notion of derivatives
If not, it is a form of smoothing, hopefully, the ”ECJ” is informative.
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Differentiating (QP-H(θ)) solutions: other examples
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Differentiating (QP-H(θ)) solutions: a toy example

Consider the feasible LP parameterized by θ ∈ (0, 1)

x⋆(θ) ∈ argmin
x1,x2∈R2

x1 + x2

s.t. θ ≤ x1 + x2,

0 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 1.
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Differentiating (QP-H(θ)) solutions: a toy example

Some differential calculus:
∂H
∂θ = 0, ∂g

∂θ = 0, ∂C
∂θ = 0, ∂u

∂θ = (−1 0 0 0 0)⊤.

H C⊤ 0
C 0 −I
0 Π1 − I Π1Π2

0 0 C⊤Π3

 ∈ ∂G (x⋆, z⋆, t⋆; θ)

∂v⋆
,

for some Π1 ∈ ∂[.]+([t
⋆]− + z⋆), Π2 ∈ ∂[.]−(t

⋆) and Π3 ∈ ∂[.]+(t
⋆).

Feasible problem: Π2 = I , Π3 = 0
Strict complementarity+unique active constraint:

Π1 =

1 0 0
0 0 0
0 0 0

.
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Differentiating (QP-H(θ)) solutions: a toy example

The problem simplifies to

∂x⋆

∂θ ,
∂z⋆

θ ∈ argmin
bx ,bz

∥∥∥∥∥∥
 0 0 −1

0 0 −1
−1 −1 0

(bx)1(bx)2
bz

+

00
1

∥∥∥∥∥∥
2

2

with ∂t⋆

∂θ = 0.
The IFT does not apply (degenerate constraints)!
Yet, the least square provides solutions given by the equations:

(bx)1 + (bx)2 =
1
2 ,

bz ∈ R.
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Differentiating (QP-H(θ)) solutions: Backward AD
algorithms (generic case)

∂L
∂θ

= (b⋆1 )
⊤ ∂H

∂θ
x⋆ + (b⋆1 )

⊤ ∂g

∂θ
+ (b⋆2 )

⊤ ∂C

∂θ
x⋆

+ (z⋆)⊤
∂C

∂θ
b⋆1 + (s⋆)⊤

∂C

∂θ
b⋆4 − (b⋆2 )

⊤ ∂u

∂θ
,

with b⋆1, b
⋆
2, b

⋆
3 and b⋆4 with solutions of

H C⊤ 0 0
C 0 (I − Π1) 0
0 −I −Π1Π2 (1− Π2)C



b⋆1
b⋆2
b⋆3
b⋆4

 = −

 δL
δx⋆
δL
δz⋆
δL
δs⋆

 .
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Differentiating (QP-H(θ)) solutions: Backward AD
algorithms (feasible case)

∂L
∂θ

= (b⋆x)
⊤∂H

∂θ
x⋆ + (b⋆x)

⊤∂g

∂θ
+ (Π1b

⋆
z )

⊤∂C

∂θ
x⋆

+ (z⋆)⊤
∂C

∂θ
b⋆x − (Π1b

⋆
z )

⊤∂u

∂θ
,

with b⋆x , b
⋆
z , the solution of the following linear system[

H C⊤Π1

C −(I − Π1)

] [
bx
bz

]
= −

[
δL
δx⋆
δL
δz⋆

]
.
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Differentiating (QP-H(θ)) solutions: toy example
(continued!)

LP parameterized by θ ∈ (0, 1):

x⋆(θ) ∈ argmin
x1,x2∈R2

x1 + x2

s.t. θ ≤ x1 + x2,

0 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 1.

We choose: x⋆1 = x⋆2 = θ
2 .

The problem simplifies to

∂x⋆

∂θ
, ∂z⋆

θ
∈ arg min

bx ,bz

∥∥∥∥∥∥
 0 0 −1

0 0 −1
−1 −1 0

(bx )1
(bx )2
bz

 +

0
0
1

∥∥∥∥∥∥
2

2

with ∂t⋆

∂θ = 0.
The IFT does not apply (degenerate
constraints)!
Yet, the least square provides
solutions given by the equations:

(bx)1 + (bx)2 =
1
2 ,

bz ∈ R.
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Differentiating (QP-H(θ)) solutions: toy example
(continued!)

Let’s minimize L(θ) = x⋆1 (θ).

If we
try applying the IFT we get

 0 0 −1
0 0 −1
−1 −1 0

(bx )1
(bx )2
bz

 = −

1
0
0

 ,

which is infeasible! The least-square
solution, yet provides

1 1 0
1 1 0
0 0 2

(b⋆x )1
(b⋆x )2
b⋆z

 =

0
0
1

 ,

which outputs as ECJ for
∂L
∂θ = b⋆z = 1

2 . It is coherent with
∇θ(θ/2) = 1/2, if we choose
x⋆1 (θ) = θ/2.

The problem simplifies to

∂x⋆

∂θ
, ∂z⋆

θ
∈ arg min

bx ,bz

∥∥∥∥∥∥
 0 0 −1

0 0 −1
−1 −1 0

(bx )1
(bx )2
bz

 +

0
0
1

∥∥∥∥∥∥
2

2

with ∂t⋆

∂θ = 0.
The IFT does not apply (degenerate
constraints)!
Yet, the least square provides
solutions given by the equations:

(bx)1 + (bx)2 =
1
2 ,

bz ∈ R.
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Differentiating (QP-H(θ)) solutions: toy example
(continued!)

Let’s minimize L(θ) = x⋆1 (θ). If we
try applying the IFT we get
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0
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Yet, the least square provides
solutions given by the equations:
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Differentiating (QP-H(θ)) solutions: toy example
(continued!)

Let’s minimize L(θ) = x⋆1 (θ). If we
try applying the IFT we get

 0 0 −1
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Differentiating (QP-H(θ)) solutions: toy example
(continued!)

Let’s minimize L(θ) = x⋆1 (θ). If we
try applying the IFT we get

 0 0 −1
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∇θ(θ/2) = 1/2, if we choose
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The problem simplifies to
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The IFT does not apply (degenerate
constraints)!
Yet, the least square provides
solutions given by the equations:

(bx)1 + (bx)2 =
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bz ∈ R.

Antoine, Bambade (EDF) QPLayer PGMO 2023



Differentiating (QP-H(θ)) solutions: toy example
(continued!)
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Figure: 40 iterations of gradient descent for minimizing x⋆1 (θ) using ECJs.
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Back to the Sudoku problem: setup

Three architectures compared:

structurally feasible with strictly convex loss (standard model of
OptNet);

Forward passQP layer

input

Backward pass

Figure: OptNet layer (structurally feasible at training time).
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Back to the Sudoku problem: setup

Three architectures compared:

structurally feasible with strictly convex loss (standard model of
OptNet);

Forward passQP layer

input

Backward pass

Figure: OptNet layer (structurally feasible at training time).
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Back to the Sudoku problem: setup

Three architectures compared:

structurally feasible with strictly convex loss (standard of OptNet);

training infeasible LP towards feasibility (with QPLayer, ours).

Forward passQP layer

input

Backward pass

Figure: QPLayer training an infeasible LP.
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Back to the Sudoku problem: setup

Three architectures compared:

structurally feasible with strictly convex loss (standard model of
OptNet);

training infeasible LP towards feasibility (with QPLayer, ours).

Reformulation of (QP-H(θ)) as a convex QP (non standard)

 

QP layer

Parameters:
● trained: A

INPUT

g min ||s||2
  s, x, y, z   

  s.t., Ax=1+s*

   Hx+ATy+z=-g
   x≥0, z≤0.

BACKWARD 
PASS

x*  s*

FORWARD 
PASS

𝜕x*
 𝜕L                  

𝜕s*
 𝜕L                  L(x*)=||x*-xdesired||2+||s*||2

Figure: OptNet layer used for trying to learn A via a reformulation of (QP-H(θ)).
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Back to the sudoku: results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

10 7

10 5

10 3

10 1

101

M
SE

OptNet;
Ax=1 violation
OptNet-learn A;
Ax=1 violation
QPLayer-learn A;
Ax=1 violation
OptNet;
test loss
OptNet-learn A;
test loss
QPLayer-learn A;
test loss

Figure: Test MSE loss of QPLayer, OptNet, QPLayer-learn A, and OptNet-learn
A specialized for learning A. It includes Sudoku Ax = 1 violation.
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Back to the sudoku: results
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Figure: Test prediction errors over 1000 puzzles of OptNet, QPLayer,
QPLayer-learn A and OptNet-learn A specialized for learning A.
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Conclusion

We introduced:

QPLayer: framework for learning new types of QP layers.

Practical concept of ”Extended” Conservative Jacobian.

Practical algorithms making use of powerful AL properties.
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Appendix: Augmented Lagrangian method

The Augmented Lagrangian

LA(x , z ;µ) ≜ f (x)

+ 1
2µ(∥[Cx − u + µz ]+∥22 − ∥µz∥22)

The AL method

xk+1 ≈ϵk argmin
x

LA(x , z ;µ)

zk+1 = [ 1µ(Cx
k+1 − u) + zk ]+
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Appendix: QP layers in machine learning (example 2)

Coupling visual sensing and calibration of control algorithms in robotics.

Figure: Pipeline of image measurements for learning QP cost functions (for
optimal reaching tasks).
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The closest feasible QP problem: solution method

Augmented Lagrangian-based methods have the property of converging
towards a solution to (QP-H(θ)) if (QP(θ)) is primal infeasible.

Theorem (A. Chiche, JC Gilbert (2016))

Under Assumption (1), the revised AL algorithm does not terminate with a
direction of unboundedness and generates a sequence {(xk , zk)}
converging towards a solution to (QP-H(θ)).

Remark

revised AL algorithm means here two things: (i) the AL algorithm takes
into account a modified stopping criterion (closest feasible optimality); (ii)
the AL method is exact!
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Differentiating (QP-H(θ)) solutions: Backward AD
algorithms

Lemma

Let h : Rn × (Rni )2 → R be a differentiable function, and let H(θ), g(θ),
C (θ) and u(θ) be differentiable w.r.t. θ and satisfying 1. Then, denoting
L(θ) ≜ h(x⋆(θ), z⋆(θ), s⋆(θ)) and under IFT assumptions, we have that
∂L
∂θ can be derived as follows

∂L
∂θ

= (b⋆1 )
⊤ ∂H

∂θ
x⋆ + (b⋆1 )

⊤ ∂g

∂θ
+ (b⋆2 )

⊤ ∂C

∂θ
x⋆ + (z⋆)⊤

∂C

∂θ
b⋆1 + (s⋆)⊤

∂C

∂θ
b⋆4 − (b⋆2 )

⊤ ∂u

∂θ
,

where b⋆1, b
⋆
2, b

⋆
3 and b⋆4 are the solutions of the linear system[

H C⊤ 0 0
C 0 (I − Π1) 0
0 −I −Π1Π2 (1 − Π2)C

] [
b⋆1
b⋆2
b⋆3
b⋆4

]
= −

[
δL
δx⋆
δL
δz⋆
δL
δs⋆

]
.
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Differentiating (QP-H(θ)) solutions: Backward AD
algorithms (feasible case)

Lemma

Let h : Rn × (Rni ) → R be a differentiable function, and let H(θ), g(θ),
C (θ) and u(θ) be differentiable w.r.t. θ and satisfying Assumption 1.
Then, denoting L(θ) ≜ h(x⋆(θ), z⋆(θ)), we have under IFT assumptions
that ∂L

∂θ can be derived as follows

∂L
∂θ

= (b⋆x )
⊤ ∂H

∂θ
x⋆ + (b⋆x )

⊤ ∂g

∂θ
+ (Π1b

⋆
z )

⊤ ∂C

∂θ
x⋆ + (z⋆)⊤

∂C

∂θ
b⋆x − (Π1b

⋆
z )

⊤ ∂u

∂θ
,

with b⋆x , b
⋆
z , the solution of the following linear system[

H C⊤Π1
C −(I − Π1)

] [
bx
bz

]
= −

[
δL
δx⋆
δL
δz⋆

]
.

Antoine, Bambade (EDF) QPLayer PGMO 2023


	Introduction
	Solution outline
	Solving the closest feasible problem
	Differentiating closest feasible problem solutions
	Numerical results
	Conclusion

