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Introduction: QP layers v.s. neural networks

Outputs of current learning pipelines are explicit function of the inputs.

LOSS TO MINIMIZE PARAMETER UPDATE
INPUT
Neural network OUTPUT
— . —— Ly)=lly vy f— i izptgdh
X y'=tanh(w'x-b) y AL oL ay ow
Parameters: ow  dy ow
e trained: w! FORWARD BACKWARD
o fixed: b PASS PASS

Figure: Example of a feedforward neural network.
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Introduction: QP layers v.s. neural networks

More recent literature considers differentiable optimization problems as
layers.

LOSS TO MINIMIZE PARAMETERS UPDATE
INPUT
v QP layer OUTPUT
—| —> Ly)=lly -y —
x y'= argmin ||Dy-x|[? y L _ L3y swiogtgdl
y 3c” ay'ac
s.t., ClysC'z+exp(h') | rorwarD a _ oL 3Y Zt+1=gt Ok
PASS 9z 3y o 9z
dL  dL ?1
Parameters: —= —, ht+1_ht 3L
e trained: C',z',h! oh dy oh ah
o fixed: D BACKWARD
PASS

Figure: Example of a Quadratic Programming layer (with D nonsingular).
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Introduction: QP layers pros (representative power)

Why using such more complex architecture ?

@ For some class of layers, the representative power is similar to those
of standard Neural Networks,

Theorem (B. Amos & Z. Kolter (2021))

Let f : R" — R" be an elementwise piecewise linear function with k linear
regions. Then function can be represented as an OptNet layer using O(nk)
parameters. Additionally, the layer zj 11 = max(Wz; + b,0) for W € R"™"™,
b € R™ can be represented by an OptNet layer with O(mn) parameters.
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Introduction: QP layers pros (representative power)

Why using such more complex architecture ?

@ For some class of layers, the representative power is similar to those
of standard Neural Networks,

@ For some optimization based problem, it performs better.
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QP layers in machine learning: example 1

— ConvTrain ConvTest — OptNet Train Optiet Test

Using a convex QP as a deep
learning layer performs better than a
ConvNet for solving Sudokus.

3 2141113 6 épogg 12 14 16 18
1 1[3]12]4
4 3111412
4 1 4121311
Figure: Example of Sudoku. LR épocl;f 118 16 10

Figure: Sudoku Training plots?.

1Brandon Amos and J. Zico Kolter (2021). OptNet:Differentiable Optimization &LW EEIS PSLx PR[A'JRIE

as a Layer in Neural Networks.
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Introduction: QP layers pros (practical speed)

Why using such more complex architecture ?
@ For some class of layers, the representative power is similar to those
of standard Neural Networks,

@ For some optimization based problem, it performs better,

@ Achievable practical use.
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Introduction: QP layers pros (practical speed)

Trick: use the Implicit Function Theorem.

min {f(x; 9) 2 %XTH(e) x4+ ng(e)}

xeR"
sit. C(0)x < u(8),

(QP(6))
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Introduction: QP layers pros (practical speed)

Trick: use the Implicit Function Theorem.

min {f(x; 9) 2 %XTH(e) x4+ ng(e)}

xeR"
sit. C(0)x < u(8),

(QP(6))

Noting (x*(0), z*()) a solution
to (QP(0)), applying the IFT

outputs:
H cT f’a{é
D(z*)C D(Cx* —u)| | %

By R

D(z )(aax _%)

|—|Q>
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Introduction: QP layers pros (practical speed)

Trick: use the Implicit Function Theorem.

i {1050 & 5T HO < 57a(0)) (QP(6))

s.t. C(0) x < u(®),

Noting (x*(0), z*()) a solution
to (QP(0)), applying the IFT

outputs: orT rox
e o] ¥ E
L T RS NN
_ 9? +é?gx+_77 C D(Cx* —u)| |d, 55
(%6 26)

PGMO 2023
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Introduction: cons (limited trainable architectures)

INPUT QP Iayer OUTPUT
> N —_
Two issues X y'€ argmin x-y y
. y
e IFT assumptions (non St AY=1andy20. | rorwarD
singularity of KKT matrix etc.), Parametors: PASS
hili Ho ined: A'
@ Structural feasibility at training o traine

and test time.
Figure: A LP layer. Nothing guarantees

during training that the vector of 1 lies
in the range space of the A?.
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Solution outline: ideal pipeline

General idea: consider a "broader” problem.
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Solution outline: ideal pipeline

General idea: consider a "broader” problem.

@ Forward pass: solve the closest feasible QP.

INPUT FORWARD
QP Iayer PASS LOSS

.

X y €argmin x-y Vs
’ * * * 2 *
y - | LOGS)=lly-yested|2+]|sT) 2

s.t., Aly=1+s* and y20. oL oL

3 o

Parameters: BACKWARD
e trained: A PASS

Figure: General solution outline.
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Solution outline: ideal pipeline

General idea: consider a "broader” problem.
@ Forward pass: solve the closest feasible QP.

@ Backward pass: differentiate through one solution.

INPUT FORWARD
QP Iayer PASS LOSS

.

X y €argmin x-y Vs
’ * * * 2 *
y - | LOGS)=lly-yested|2+]|sT) 2

s.t., Aly=1+s* and y20. oL oL

3 o

Parameters: BACKWARD
e trained: A PASS

Figure: General solution outline.
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Solution outline: plan

General plan:
@ Forward pass: solve the closest feasible QP.
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Solution outline: plan

General plan:
@ Forward pass: solve the closest feasible QP.

o Define the closest feasible problem.
e Propose an efficient algorithm to solve it.
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Solution outline: plan

General plan:
@ Forward pass: solve the closest feasible QP.

o Define the closest feasible problem.
e Propose an efficient algorithm to solve it.

@ Backward pass: differentiate through one solution.
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Solution outline: plan

General plan:
@ Forward pass: solve the closest feasible QP.
o Define the closest feasible problem.
e Propose an efficient algorithm to solve it.
@ Backward pass: differentiate through one solution.

e Prove applying the IFT makes sense.
e Provide tractable algorithms.
e In non differentiable case, provide alternatives.
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The closest feasible QP problem: definition

1
x*(0) € argmin {f(x; ) = EXTH(Q)X + ng(H)}
x€eR"

s.t. C(0)x < u(0),
where H(0) € ST(R), g(0) € R", C(§) € R"*" and u(#) € R™.

(QP(6))
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The closest feasible QP problem: definition

1
x*(0) € argmin {f(x; ) = EXTH(G)X + ng(Q)}
x€eR"

s.t. C(0)x < u(h),

(QP(6))

where H(0) € ST(R), g(0) € R", C(§) € R"*" and u(#) € R™.

H(0) is symmetric positive definite in the direction of g(0) or g(0) is
orthogonal to the recession cone of QP(0), i.e.,
g(0) LC>(0) = {y e R"|C(0)[x + 7y] < u(d) s.t. C(0)x < u(f), T >0}.
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The closest feasible QP problem: definition

Under Assumption (1) the closest feasible problem (QP-H(#)) is
well-posed:

5*(0) = arg miy 35l
s.t. x*(0),z*(0) € arg min max L(x, z,s;6), (QP-H(®))
x€ER" ZG]R:_"

with L(x, z,s;0) £ %XTH(Q)X +x"g(0)+z"(C(O)x — u() — s)
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The closest feasible QP problem: definition

Under Assumption (1) the closest feasible problem (QP-H(#)) is
well-posed:

5*(0) = arg miy 35l
s.t. x*(0),z*(0) € arg min max L(x, z,s;6), (QP-H(®))
x€ER" ZG]R:_"

with L(x, z,s;0) £ %XTH(Q)X +x"g(0)+z"(C(O)x — u() — s)

S argminseR(C)—i—]—oo,u] ”5”§ \
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The closest feasible QP problem: solution method

Theorem (A. Chiche, JC Gilbert
The Augmented Lagrangian (2016)1)

Under Assumption (1), the revised
La(x,z;p) = f(x) AL algorithm does not terminate

with a direction of unboundedness

+ 2 (I[Cx — u+ pz] |3 — ||uz|3
2”(H[ Hel+llz = lluzll2) and generates a sequence {(x*,z¥)}

The AL method converging towards a solution

to (QP-H(8)).

X1 = argmin La(x, z; 1)
X
Skl _ [i(CXHl —u)+ 2", (i) revised AL algorithm = modified
stopping criterion; (ii) exact AL
method!

1Chiche, A., Gilbert, J. C. (2016). How the augmented Lagrangian algorithm &g/z&'a/_ E@S PSLx PR[A”RIE

can deal with an infeasible convex quadratic optimization problem.
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The closest feasible QP problem: solution method in

practice

The ProxSuite library

ProxSuite

ADVANCED OPTIMIZERS FOR ROBOTICS AND BEYOND

fast: C++ implementation, with homemade linear Cholesky solver
scalable: various backends for dense, sparse and matrix-free optimization
easy-to-use: API closed to OSQP, Python and Julia bindings
open-source: BSD-license, easily installable

PSRN

( ' github.com/Simple-Robotics/proxsuite

' ’ conda install -c conda-forge proxsuite

s

&’zu'a,— g% PsLx PRIAIIRIE
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Differentiating (QP-H(#)) solutions: methodology

o Analyze the properties of KKT map for (QP-H(6)),
@ Extended Conservative Jacobian definition.

@ Practical algorithms.
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Differentiating (QP-H(#)) solutions: KKT conditions

of (QP-H(0))

H(O)x + g(0) + C(0) " z
C(O)x —u(f) —t
e +2]: -2 (©)
C(0) T[]+

G(x,z,t, 0) =

It holds that (x*, z*, s*) solves QP-H(0) iff there exists t* € R"
s.t. G(x*,z*,t*; 6) =0 and s* = [t*];+.
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Differentiating (QP-H(#)) solutions: path differentiability
of G

G is path differentiable w.r.t. x*, z* and t*. Furthermore, if H(0), g(0),
C(0) and u(0) are differentiable w.r.t. 6, then G is path differentiable
w.r.t. 6.

It means G has a conservative! Jacobian. It is equivalent to having a
chain rule for the Clarke subdifferential

Jac G(w) £ conv{ lim Jac G(wy) € diffr, wi — w},

k—oo

with diff¢ the full measure set where G is differentiable, and Jac G the
standard Jacobian of G.

1 4 Al
Bolte, J., Le, T., Pauwels, E., Silveti-Falls, T. (2021). Nonsmooth &I,W E@S PSLx PR[JRIE
implicit differentiation for machine-learning and optimization.
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Differentiating (QP-H(#)) solutions: Extended

Conservative Jacobian

Let v* = (x*,z*,t*) € R" x R} x R" s.t. G(x*,z*, t*; 0) = 0.

0G(x*,z*, t*; 0) OG(x*,z*, t*; 0) 2
w +

ov* 00

00’ 00 00

) € arg min .
w 2

nat e

69 , with e 9([.]4+)(t*).
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Differentiating (QP-H(#)) solutions: Extended

Conservative Jacobian

Why do we use a least-square 7
@ It makes sense in "standard” cases:

o If (QP-H(#)) reduces to (QP(0)) (i.e., feasible problem), and if the IFT
applies, we recover standard Jacobian.
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Differentiating (QP-H(#)) solutions: Extended

Conservative Jacobian

Why do we use a least-square ?

@ It makes sense in "standard” cases:

o If (QP-H(#)) reduces to (QP(#)) (i.e., feasible problem), and if the IFT
applies, we recover standard Jacobian.

o If (QP-H(#)) is infeasible and satisfies non-singularity conditions for a
"conservative” IFT, we recover conservative Jacobians

Let C(0), u(0) be differentiable w.r.t. §, and H =0, and g be fixed
w.r.t. 0 and satisfying Assumption 1. If s* > 0 and z* =0 (i.e., it does
not satisfy strict complementarity) and C is full row rank, then the ECJs
of x*, z*, t*, and s* correspond to conservative Jacobians.
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Differentiating (QP-H(#)) solutions: Extended

Conservative Jacobian

Why do we use a least-square 7
@ It makes sense in "standard” cases:

o If (QP-H(#)) reduces to (QP(0)) (i.e., feasible problem), and if the IFT
applies, we recover standard Jacobian.

o If (QP-H(#)) is infeasible and satisfies non-singularity conditions for a
"conservative” IFT, we recover conservative Jacobians

@ In non standard cases (i.e., IFT does not apply):
e Solutions may still have a notion of derivatives
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Differentiating (QP-H(#)) solutions: Extended

Conservative Jacobian

Why do we use a least-square 7
@ It makes sense in "standard” cases:

o If (QP-H(#)) reduces to (QP(#)) (i.e., feasible problem), and if the IFT
applies, we recover standard Jacobian.

o If (QP-H(#)) is infeasible and satisfies non-singularity conditions for a
"conservative” IFT, we recover conservative Jacobians

@ In non standard cases (i.e., IFT does not apply):

e Solutions may still have a notion of derivatives
e If not, it is a form of smoothing, hopefully, the "ECJ" is informative.
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Differentiating (QP-H(#)) solutions: other examples

Antoine, Bambade (EDF)

The Implicit
Function
Theorem

QPLayer
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Differentiating (QP-H(#)) solutions: a toy example

Consider the feasible LP parameterized by 6 € (0,1)
x*(0) € argminx; + x2
x1,x2€ER?
s.t. 0 <x3+ xo,
0<x <1,
0<x <1.
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Differentiating (QP-H(#)) solutions: a toy example

Some differential calculus:

OH __ og __ oC __ ou __
90 =05 =0 9 =0 5 =

Antoine, Bambade (EDF)
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QPLayer

breia—

L4 psLx PRIAIRIE

ENS

PGMO 2023



Differentiating (QP-H(#)) solutions: a toy example

Some differential calculus:

oOH __ og oC __ ou __ T

OH _ 0, %8 0, 9¢ — 0 24 = (~-10000)".
H cT 0
cC 0 — dG(x*, z*, t*; 0)
0 M-/ MMyl € G ’
0 0 CTI_I3

for some My € O[]+ ([t*]- + z*), M2 € [.]-(t*) and M3 € I[.]+(t¥).

Loveca— By ipsLx PRIAIRIE

ENS

Antoine, Bambade (EDF) QPLayer PGMO 2023



Differentiating (QP-H(#)) solutions: a toy example

Some differential calculus:
o] 0, oC ou

H cT o

C 0 - 0G(x*,z*, t*; 0)
0 M-/ M| S e :
0 0 C'Ms

for some My € O[]+ ([t*]- + z*), M2 € [.]-(t*) and M3 € I[.]+(t¥).
Feasible problem: My =1, 3 =0
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Differentiating (QP-H(#)) solutions: a toy example

Some differential calculus:
o] 0, oC ou

H cT o

C 0 - 0G(x*,z*, t*; 0)
0 M-/ M| S e :
0 0 C'Ms

for some My € O[]+ ([t*]- + z*), M2 € [.]-(t*) and M3 € I[.]+(t¥).
Feasible problem: My =1, 3 =0
Strict complementarity-+unique active constraint:
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Differentiating (QP-H(#)) solutions: a toy example

The problem simplifies to

0 0 —17 [(bo)1 0]/
9 92 cargmin||[| 0 0 —1| [(be)2| + |0
bx;b, -1 -1 0 b, 1],
with 25 = 0.

The IFT does not apply (degenerate constraints)!
Yet, the least square provides solutions given by the equations:

(bx)l + (bX)2 = %7
b, € R.
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Differentiating (QP-H(#)) solutions: Backward AD

algorithms (generic case)

oL \ TE)H o T8 T OC -
a6~ (50) + (6)T 55+ (53) S x
* 8C * TaC T@u
+(z)" %b +(s7) 90 g br — (b3) 90’
with b}, b3, b and b} with solutions of
H CcT 0 0 by s
c o0 (/ — ”1) 0 bg S (gzz*
0 —/ —MM (1-10)C br (1
2eden— k1 PsLx PRIAIRIE
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Differentiating (QP-H(#)) solutions: Backward AD

algorithms (feasible case)

or OH ag oC
20 = (b)t)T@ (b*)T + (M) — 50
0C
F\T Y~ % * Ti
+(2¥) 50 b} — (M1b7) 50

with b%, b}, the solution of the following linear system

<GB El
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Differentiating (QP-H(#)) solutions: toy example

(continued!)

The problem simplifies to

A
0 0 —1| |(bx)2] + |0
-1 -1 o0 b, 1

2

i)

LP parameterized by 6 € (0, 1): bo %" € argmin
'X Pz 2

x*(0) € argminx; + x2

x1,x0 €R2 with % =0.
sit. 0 < x1+ xo, The IFT does not apply (degenerate
0<x <1, constraints)!

Yet, the least square provides

0 S X2 S 1.
solutions given by the equations:

We choose: xj = 2*:%. ()1 + () )
x )1 x)2 = %>
b, € R.
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Differentiating (QP-H(#)) solutions: toy example

(continued!)

Let's minimize £(0) = x;(0).
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Differentiating (QP-H(#)) solutions: toy example

(continued!)

Let's minimize £(0) = x{(0). If we
try applying the IFT we get

55 -
0 0 —1| |(bx)2| =— |0,
-1 -1 o0 b, 0

which is infeasible!

Antoine, Bambade (EDF)

QPLayer
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Differentiating (QP-H(#)) solutions: toy example

(continued!)

Let's minimize £(0) = x{(0). If we
try applying the IFT we get

55 -
0 0 —1| |(bx)2| =— |0,
-1 -1 o0 b, 0

which is infeasible! The least-square
solution, yet provides

11 0] [(b) 0

ERRICIR

0 o 2| | b 1
which outputs as ECJ for
%—g = b = 1. It is coherent with
Vg(0/2) =1/2, if we choose

xi(0) =0/2. g M |psLx PRIAIRIE
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Differentiating (QP-H(#)) solutions: toy example

(continued!)

Let's minimize £(0) = x{(0). If we
try applying the IFT we get

55 -
0 0 —1| |(bx)2| =— |0,
-1 -1 o0 b, 0

which is infeasible! The least-square
solution, yet provides

11 0] [k 0
il
0o o 2| | b 1

which outputs as ECJ for

%—g = b = 1. It is coherent with
Vg(0/2) =1/2, if we choose
x7(0) =6/2.

Antoine, Bambade (EDF)

QPLayer

The problem simplifies to

. 0 0o —1] [(bu)1 ol |I?
9C, 92 ¢ argmin|| | 0 0 —1| |(bx)2] + |0
by bz —1 —1 0 by 1 2
H ot* __

The IFT does not apply (degenerate
constraints)!

Yet, the least square provides
solutions given by the equations:

(bx)l + (bx)2 = %7
b, € R.
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Differentiating (QP-H(#)) solutions: toy example

(continued!)
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Figure: 40 iterations of gradient descent for minimizing x;(#) using ECJs.
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Back to the Sudoku problem: setup

Three architectures compared:
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Back to the Sudoku problem: setup

Three architectures compared:

@ structurally feasible with strictly convex loss (standard model of

OptNet);
QP Iayer Forward pass
1 7Y —
input  —p min 51()"'”1‘”3 — inputTz ok L(z*) = 1”1* _ Tll'u(',”‘z

zER™ L < : 5l z 2
Az = Az, dx*

s.t. >0
z=U Backward pass

Figure: OptNet layer (structurally feasible at training time).
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Back to the Sudoku problem: setup

Three architectures compared:
@ structurally feasible with strictly convex loss (standard of OptNet);

@ training infeasible LP towards feasibility (with QPLayer, ours).

QP Iayer Forward pass
. . T ..
) min —input” x 275"
input ——> aern P oL ¢ Lz, ) = le” — 213 + 107713
oL Ol g—— 2
Az =1, o+ Ds*
s.t.
x> 0. Backward pass

Figure: QPLayer training an infeasible LP.
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Back to the Sudoku problem: setup

Three architectures compared:

@ structurally feasible with strictly convex loss (standard model of
OptNet);

e training infeasible LP towards feasibility (with QPLayer, ours).
o Reformulation of (QP-H(#)) as a convex QP (non standard)

INPUT
QP layer reeas
. > ) , X s R
min [s|| aL aL \ L(x)=[Ix-xesired] 24| 2 \
S, X,y,Z '5;(' 'a_;" <+
s.t., Ax=1+s" BACKWARD
Hx+ATy+z=-g PASS
x20, z<0.
Parameters:
e trained: A

Figure: OptNet layer used for trying to learn A via a reformulation of (QP-H(60)).
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Back to the sudoku: results

OptNet;
Ax=1 violation
10t - ___ OptNet-learn A;
Ax=1 violation
o QPLayer-learn A;
10-1° Ax=1 violation
w v ___ OptNet;
0 3 test loss
= 103 - :| __________________________________ OptNet-learn A;
:: LemTTTTTIRTTTT test loss
!:/' QPLayer-learn A;
10-5 | test loss
|
1
ol b ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

Figure: Test MSE loss of QPLayer, OptNet, QPLayer-learn A, and OptNet-learn
A specialized for learning A. It includes Sudoku Ax = 1 violation.
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Back to the sudoku: results

10%
102-
—— OptNet
10t- —— OptNet-learn A
QPLayer-learn A
100-

8.0 75 100 125
Epoch

Number of prediction error

Figure: Test prediction errors over 1000 puzzles of OptNet, QPLayer,
QPLayer-learn A and OptNet-learn A specialized for learning A.
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Conclusion

We introduced:

@ QPLayer: framework for learning new types of QP layers.
@ Practical concept of " Extended” Conservative Jacobian.

@ Practical algorithms making use of powerful AL properties.
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Appendix: Augmented Lagrangian method

The Augmented Lagrangian

La(x,zip) = f(x)
+ 2 (I1Cx — u+ pz] |13 — l|nz3)

The AL method

k+1

X Rk aArg min ,CA(X, Z, ,u) Magnus Hestenes Michael ].D. Powell
X

Zk+1 — [%(CXkJrl o u) + Zk]+
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Appendix: QP layers in machine learning (example 2)

Coupling visual sensing and calibration of control algorithms in robotics.

Sensors (Images/Motion Capture)

|

|

B |

. T ) i

Inverse Dynamics ——f —
U 1) i

|

|

|

|

5Hz

Figure: Pipeline of image measurements for learning QP cost functions (for
optimal reaching tasks).
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The closest feasible QP problem: solution method

Augmented Lagrangian-based methods have the property of converging
towards a solution to (QP-H(0)) if (QP(#)) is primal infeasible.

Theorem (A. Chiche, JC Gilbert (2016))

Under Assumption (1), the revised AL algorithm does not terminate with a
direction of unboundedness and generates a sequence {(x*, z¥)}
converging towards a solution to (QP-H(#)).

revised AL algorithm means here two things: (i) the AL algorithm takes
into account a modified stopping criterion (closest feasible optimality); (ii)
the AL method is exact!

o
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Differentiating (QP-H(#)) solutions: Backward AD

algorithms

Let h:R" x (R")%2 — R be a differentiable function, and let H(6), g(0),
C(6) and u(0) be differentiable w.r.t. § and satisfying 1. Then, denoting
L(0) £ h(x*(0),z*(0),s*(0)) and under IFT assumptions, we have that
% can be derived as follows

a£'7 *Taj* *T% *Tai* *T%* *T% * *Tﬂ
%—(b” BGX + (by) 89+(b2) BGX +(27) 39b1 +(s7) 89b4 (by) 30"
where by, by, b3 and b} are the solutions of the linear system
H cT 0 0 Zi %‘f
cC 0 (- 0 Zl=— 2= .
0~/ —mM  @-Mc) |3 s
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Differentiating (QP-H(#)) solutions: Backward AD
algorithms (feasible case)

Let h:R" x (R™) — R be a differentiable function, and let H(0), g(0),
C(0) and u(0) be differentiable w.r.t. 0 and satisfying Assumption 1.
Then, denoting L(0) = h(x*(0),z*(0)), we have under IFT assumptions
that g—g can be derived as follows

oL L OH T g T ac T ac T 0u
— = (b)) —x (b)) = +(Mb)) —x* +(z%) —bf — (Mb)) —,
2o = (B) g H (B g+ (Mb)t Zo + (&) Zob = (Mb) =5

with b}, b}, the solution of the following linear system

H c™n be] _ AL
[ st ) = - [#]-

v
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