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Associated references

ProxQP solver - references

Conference articles
● AB, S. El-Kazdadi, A. Taylor, J. Carpentier. ProxQP: Yet another Quadratic 

Programming Solver for Robotics and beyond. In Robotics: Science and 
System (RSS), 2022;

● W. Jallet, AB, N. Mansard, J. Carpentier. Constrained differential dynamic 
programming: a primal-dual augmented lagrangian approach. In EEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS), 2022;

Workshop articles
● W. Jallet, AB, N. Mansard, J. Carpentier. ProxNLP: a primal-dual augmented 

Lagrangian solver for nonlinear programming for Robotics and beyond. In 
6th Legged Robots Workshop, 2022;

Submitted articles
● AB, F. Schramm, S. El-Kazdadi, S. Caron, A. Taylor, J. Carpentier. ProxQP: 

an Efficient and Versatile Quadratic Programming Solver for Real-Time 
Robotics Applications and Beyond. Submitted in september 2023 to IEEE 
Transactions on Robotics (TR0);

● W. Jallet, AB, E. Arlaud, S. El-Kazdadi, N. Mansard, J. Carpentier. ProxDDP: 
Proximal Constrained Trajectory Optimization.Submitted in september 
2023 to IEEE Transactions on Robotics (TR0);
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Point

Augmented
Lagrangian

GALAHAD, QUADPROG, DAQP, QPNNLS, QPOASES

GUROBI, MOSEK, CVXOPT, ECOS, QPSWIFT, HPIPM, 
CLARABEL, BPMPD, OOQP

OSQP, SCS, LANCELOT, QPALM, QPDO

Methods Solvers
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Quadratic program definition

ProxQP solver - methodImage source: Wikipedia

Convex Quadratic Program (QP) standard form:
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Contribution:
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Software contribution

ProxQP solver - methodProxQP solver - method



Benchmark setup: solver test set

ProxQP solver - benchmark

Name Early stoppingMethod Backend

Active Set Quadprog Dense

Warm start

Active Set QPOASES Dense

Interior Point MOSEK Sparse

Interior Point QPSWIFT Sparse

ADMM OSQP Sparse

ADMM SCS Sparse

12/33



Benchmark setup: problems involved

ProxQP solver - benchmark

Problem type Controlled objectSparsity Reference

Dense Inverse 
kinematics

tasts-robots, 2023 UR3, UR5, Stretch, Dual ARM,
KinovaGen2, Sigmaban

Dense

Dense

SQP

MPC

Ferreau et al., 2014 Chain of masses

Wieber, 2006a Humanoid robot

Upkie robot

Sparse MPC Wang & Boyd, 2009 Chain of masses

Sparse MPC Stellato et al., 2020 Synthetic 

Dense MPC tasts-robots, 2023
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Dense QP benchmark

ProxQP solver - benchmark

Table: Dense QP benchmarks (average runtime per time-step (IK) and total simulation runtimes).
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Sparse QP benchmark

Table: Sparse convex MPC benchmark (total runtimes in ms for solving 100 simulation steps).

ProxQP solver - benchmark
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Robustness to perturbations

Image source: S. Caron’s blog

Experiment: Controlling the lateral center-of-mass trajectory (blue) to maintain the ZMP (red) 
within the real support polygon (dotted dark green and blue). Light dotted lines are more 
conservative ZMP bounds.

ProxQP solver - benchmark
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Robustness to perturbations

ProxQP solver - benchmark

Table: Humanoid locomotion MPC problems with perturbations (percentage of problems solved).
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Test on a real hardware

Control trajectory

Safety constraints

Model Predictive Control (MPC)

Dynamic model

https://docs.google.com/file/d/1iNwMqOgeY3zGbZ7E9W3_FO2Ou1QR-WPB/preview
https://docs.google.com/file/d/16tyrSq2FNedBYZP9LRIyeyVDUn75BC4L/preview
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Associated references

Conference articles
● L. Montaud, Q. Le Lidec, AB, V. Petrik, J. Sivic, J. Carpentier. Differentiable 

collision detection: a randomized smoothing approach. In IEEE: 
International Conference on Robotics and Automation (ICRA), 2023;

Submitted articles
● AB, F. Schramm, A. Taylor, J. Carpentier. Leveraging augmented 

Lagrangian techniques for differentiating over infeasible quadratic 
programs in machine learning. In International Conference on Learning 
Representations (ICLR), 2024;

● W. Jallet, AB, F. Schramm, Q. Le Lidec, N. Mansard, J. Carpentier. Notes on 
Importance Sampling of the first order estimator. Communication iterm 
submitted in september 2023 to IEEE Transactions on Robotics (TR0);

QPLayer - references
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Standard neural network pipeline

QPLayer - references

Outputs of current learning pipelines are explicit function of the inputs.

Figure: Example of a feedforward neural network.
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Quadratic programming layer pipeline

QPLayer - references

More recent literature considers differentiable optimization problems as layers.

Figure: Example of a Quadratic Programming Layer (with D nonsingular)



22/33

QP layers in machine learning 

QPLayer - references

Convex QP layers performs better than 
a ConvNet for solving Sudokus.

Figure: Example of Sudoku.

1B. Amos, Z. Kolter (2021)

Figure: Training and test plots1.
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QP layers cons: limited trainable architecture

Figure: a LP layer. Nothing guarantees during training that the vector of 1 lies in the 
range space of At. 

QPLayer - references
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Solution outline: ideal pipeline

QPLayer - solution outline
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The closest feasible QP problem: solution method

QPLayer - forward pass 25/33

Contribution:
Solving closest feasible QP using 

ProxQP

A. Chiche, J-C. Gilbert (2016)
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E. Pauwels et al. (2019)
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The backward pass: differentiating closest QP solutions

A classical technique: the Implicit Function Theorem. 

Contribution:
Extend the technique for the closest 

feasible QP solutions.

The map is path-differentiable.

Contribution:
Efficient algorithms to solve these 

problems.

Contribution:
QPLayer: A full differentiable pipeline in 

C++ connected with PyTorch.

26/33QPLayer - backward pass
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Numerical benchmark: back to the Sodoku problem. 

QPLayer - benchmark

Convex QP layers performs better than 
a ConvNet for solving Sudokus.

Figure: Example of Sudoku.

1B. Amos, Z. Kolter (2021)

Figure: Training and test plots1.
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Architecture QPLayer-learn A

QPLayer - benchmark
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Architecture OptNet-learn A

QPLayer - benchmark



30/33

Architecture OptNet

QPLayer - benchmark



31/33

Loss comparison

QPLayer - benchmark



ECJ least square error over all mini-batches = 0

Loss comparison
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Prediction error comparison
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Conclusion
Optimization Differentiable optimization

Methodological
contributions

Software

Applications

Perspectives

ProxQP algorithm IFT for closest feasible QPs
Extended Conservative Jacobian
Methodology for learning new QP layers 

Augmented Lagrangian based methods

ProxQP solver
ProxSuite library

QPLayer learning pipeline

Simulated problems,
Real robot

Classic learning tasks (denoising, object 
recognition, cartpole, Sudoku)

Applications to control for more 
structured learning
Other conic constraints

Extension of MM property
Readjust control with infeasible 
perturbations
Conic solvers, non convex 
programming



Questions ?
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Exact penalty function approach by Fletcher

ProxQP - method

A. Chiche, J-C Gilbert (2016)
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Some (known) converging bias of PPA

ProxQP - method

Güler (1991)



Some properties of the KKT map used

ProxQP - method

Saddle subdifferential:

KKT map for feasible QPs:

-Maximal monotone → can be used for PPA1,
-Polyhedral mapping → outer Lipschitz continuous2 (key for automatic scheduling).

1E. K. Ruy, S. Boyd (2016); 2A. L. Dontchev, R. T. Rockafellar (2009)



Outer Lipschitz continuity and PMM

ProxQP - method

Outer Lipschitz continuity:

Key property of PMM1:

ProxQP - method1R. T. Rockafellar (1976)



Outer Lipschitz continuity v.s. Lojasiewicz inequality

ProxQP - method

Outer Lipschitz continuity:

Lojasiewicz inequality:



More generic growth inequalities1

ProxQP - method
1F. J. Luque (1981)

1. F linear (typical QP case)
→ Linear convergence of PMM (tight bound)

2. F power function with order s at least 1
→ superlinear convergence of order at least s

3. F flat neighbourhood of 0 (and non negative)
→ appropriate stopping criterion (Ar) provides superlinear convergence of order r

4. Growth exceeds any linear bounding
→ sublinear convergence
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