Primal-Dual Proximal Augmented Lagrangian Methods for Differentiable Quadratic Programming: Theory & Implementation

Antoine Bambade^{1,2} ¹Inria and ENS Paris : Willow and Sierra teams ²École des Ponts Paris Tech

Ph.D defense, 15 January 2024

École des Ponts ParisTech

Antoine Bambade^{1,2} ¹Inria and ENS Paris : Willow and Sierra teams ²École des Ponts Paris Tech

Ph.D defense, 15 January 2024

École des Ponts ParisTech

 $x_t =$ Center of Mass position, velocity, acceleration

 $x_t =$ Center of Mass position, velocity, acceleration

 $x_{t+1} = \mathbf{A}x_t + \mathbf{B}u_t$, Dynamic model

 $x_t =$ Center of Mass position, velocity, acceleration

 $x_t =$ Center of Mass position, velocity, acceleration

 $x_t =$ Center of Mass position, velocity, acceleration

A convex Quadratic Program

 $x_t =$ Center of Mass position, velocity, acceleration

 $\begin{array}{c} \textbf{Control trajectory} \\ \\ \underset{x_{t}, u_{t}}{\min} w_{T} \| x_{T} - x_{\text{goal}} \|_{2}^{2} + \sum_{t=0}^{T-1} w_{x} \| x_{t} - x_{\text{goal}} \|_{2}^{2} + w_{u} \| u_{t} \|_{2}^{2}, \\ \\ \text{s.t., } x_{t+1} = \mathbf{A} x_{t} + \mathbf{B} u_{t}, \quad \mathbf{Dynamic model} \\ \\ - x_{\max} \leq x_{t} \leq x_{\max}, \\ \\ - u_{\max} \leq u_{t} \leq u_{\max}. \end{array} \right| \quad \textbf{Safety constraints}$

A convex Quadratic Program

Plan

1. Solve efficiently these QPs

 $x_t =$ Center of Mass position, velocity, acceleration

$$\begin{array}{c} & \overbrace{x_{t}, u_{t}}^{\mathsf{Control trajectory}} \\ & \overbrace{x_{t}, u_{t}}^{\mathsf{T}} \| x_{T} - x_{\text{goal}} \|_{2}^{2} + \sum_{t=0}^{T-1} w_{x} \| x_{t} - x_{\text{goal}} \|_{2}^{2} + w_{u} \| u_{t} \|_{2}^{2}, \\ & \text{s.t., } x_{t+1} = \mathbf{A} x_{t} + \mathbf{B} u_{t}, \quad \mathbf{Dynamic model} \\ & - x_{\max} \leq x_{t} \leq x_{\max}, \\ & - u_{\max} \leq u_{t} \leq u_{\max}. \end{array} \right| \quad \mathbf{Safety \ constraints}$$

A convex Quadratic Program

Plan

- **1.** Solve efficiently these QPs
- 2. Differentiate through solutions

 $x_t =$ Center of Mass position, velocity, acceleration

$$\begin{array}{c} & \overbrace{x_{t}, u_{t}}^{\mathsf{Control trajectory}} \\ & \overbrace{x_{t}, u_{t}}^{\mathsf{T}} \| x_{T} - x_{\text{goal}} \|_{2}^{2} + \sum_{t=0}^{T-1} w_{x} \| x_{t} - x_{\text{goal}} \|_{2}^{2} + w_{u} \| u_{t} \|_{2}^{2}, \\ & \text{s.t., } x_{t+1} = \mathbf{A} x_{t} + \mathbf{B} u_{t}, \quad \mathbf{Dynamic model} \\ & - x_{\max} \leq x_{t} \leq x_{\max}, \\ & - u_{\max} \leq u_{t} \leq u_{\max}. \end{array} \right] \quad \mathbf{Safety constraints}$$

A convex Quadratic Program

Plan

- 1. Solve efficiently these QPs : ProxQP
- 2. Differentiate through solutions : **QPLayer**

$$\operatorname{prox}_{\lambda f}(v) = \operatorname{argmin}_{x} \left(f(x) + (1/2\lambda) \|x - v\|_{2}^{2} \right).$$

First ingredient: The proximal point operator

$$\operatorname{prox}_{\lambda f}(v) = \operatorname{argmin}_{x} \left(f(x) + (1/2\lambda) \|x - v\|_{2}^{2} \right).$$

First ingredient: The proximal point operator

$$\operatorname{prox}_{\lambda f}(v) = \operatorname{argmin}_{x} \left(f(x) + (1/2\lambda) \|x - v\|_2^2 \right).$$

First ingredient: The proximal point operator

$$\operatorname{prox}_{\lambda f}(v) = \operatorname{argmin}_{x} \left(f(x) + (1/2\lambda) \|x - v\|_2^2 \right).$$

First ingredient: The proximal point operator

$$\operatorname{prox}_{\lambda f}(v) = \operatorname{argmin}_{x} \left(f(x) + (1/2\lambda) \|x - v\|_2^2 \right).$$

First ingredient: The proximal point operator

$$\operatorname{prox}_{\lambda f}(v) = \operatorname{argmin}_{x} \left(f(x) + (1/2\lambda) \|x - v\|_2^2 \right).$$

First ingredient: The proximal point operator

$$\operatorname{prox}_{\lambda f}(v) = \operatorname{argmin}_{x} \left(f(x) + (1/2\lambda) \|x - v\|_{2}^{2} \right).$$

First ingredient: The proximal point operator

$$x^{\star} = \operatorname{prox}_{\lambda f}(x^{\star}),$$

Some level sets of f

$$\operatorname{prox}_{\lambda f}(v) = \operatorname{argmin}_{x} \left(f(x) + (1/2\lambda) \|x - v\|_{2}^{2} \right).$$

First ingredient: The proximal point operator

$$x^{\star} = \operatorname{prox}_{\lambda f}(x^{\star}),$$

$$x^{k+1} = \operatorname{prox}_{\lambda f}(x^k),$$

Some level sets of f

Second ingredient: The KKT map

$$\min_{x \in \mathbb{R}} f(x)$$

s.t., $Ax = b$.

Second ingredient: The KKT map

$$\min_{x \in \mathbb{R}} f(x) \qquad \nabla f(x^*) + A^\top y^* = 0,$$

s.t., $Ax = b.$ $b - Ax^* = 0.$

Second ingredient: The KKT map

$$\min_{x \in \mathbb{R}} f(x) \qquad \nabla f(x^*) + A^\top y^* = 0,$$

s.t., $Ax = b.$
$$b - Ax^* = 0.$$

$$G(x, y; H, g, A, b) \stackrel{\text{def}}{=} \begin{bmatrix} Hx + g + A^{\top}y \\ b - Ax \end{bmatrix}.$$

ProxQP solver

Antoine Bambade^{1,2} ¹Inria and ENS Paris : Willow and Sierra teams ²École des Ponts Paris Tech

Ph.D defense, 15 January 2024

École des Ponts ParisTech

Associated references

Conference articles

- **AB**, S. El-Kazdadi, A. Taylor, J. Carpentier. ProxQP: Yet another Quadratic Programming Solver for Robotics and beyond. In *Robotics: Science and System (RSS)*, 2022;
- W. Jallet, **AB**, N. Mansard, J. Carpentier. Constrained differential dynamic programming: a primal-dual augmented lagrangian approach. In *EEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, 2022;

Workshop articles

• W. Jallet, **AB**, N. Mansard, J. Carpentier. ProxNLP: a primal-dual augmented Lagrangian solver for nonlinear programming for Robotics and beyond. In *6th Legged Robots Workshop*, 2022;

Submitted articles

- **AB**, F. Schramm, S. El-Kazdadi, S. Caron, A. Taylor, J. Carpentier. ProxQP: an Efficient and Versatile Quadratic Programming Solver for Real-Time Robotics Applications and Beyond. Submitted in september 2023 to *IEEE Transactions on Robotics (TRO)*;
- W. Jallet, **AB**, E. Arlaud, S. El-Kazdadi, N. Mansard, J. Carpentier. ProxDDP: Proximal Constrained Trajectory Optimization.Submitted in september 2023 to *IEEE Transactions on Robotics (TRO)*;

ProxQP solver - references 4/33

 $x_t =$ Center of Mass position, velocity, acceleration

A convex Quadratic Program

Plan

1. Solve efficiently these QPs : ProxQP

Early stopping

A convex Quadratic Program

Plan

1. Solve efficiently these QPs : ProxQP

ProxQP solver - specifications 5/33

A convex Quadratic Program

Plan

1. Solve efficiently these QPs : ProxQP

Early

Warm

ProxQP solver - specifications 5/33

Plan

1. Solve efficiently these QPs : ProxQP

Solvers

GALAHAD, QUADPROG, DAQP, QPNNLS, QPOASES

GUROBI, MOSEK, CVXOPT, ECOS, QPSWIFT, HPIPM, CLARABEL, BPMPD, OOQP

OSQP, SCS, LANCELOT, QPALM, QPDO

ProxQP solver - specifications 5/33

Quadratic program definition

Image source: Wikipedia

Augmented Lagrangian:

$$\mathcal{L}_A(x, z; \mu) \stackrel{\text{def}}{=} f(x) + \frac{1}{2\mu} \left(\| [Cx - u + \mu z]_+ \|_2^2 - \| \mu z \|_2^2 \right),$$

smoothed shifted penalization

Magnus Hestenes

Michael J.D. Powell

Augmented Lagrangian:

$$\begin{aligned} \mathcal{L}_A(x,z;\mu) &\stackrel{\text{def}}{=} f(x) \\ + \frac{1}{2\mu} \left(\| [Cx - u + \mu z]_+ \|_2^2 - \| \mu z \|_2^2 \right), \\ &\text{smoothed shifted penalization} \end{aligned}$$

Magnus Hestenes

Michael J.D. Powell

ProxQP solver - method 7/33

Augmented Lagrangian:

$$\mathcal{L}_A(x,z;\mu) \stackrel{\text{def}}{=} f(x) \\ + \frac{1}{2\mu} \left(\| [Cx - u + \mu z]_+ \|_2^2 - \| \mu z \|_2^2 \right),$$

smoothed shifted penalization

Magnus Hestenes

Michael J.D. Powell

ProxQP solver - method 7/33

Augmented Lagrangian:

$$\mathcal{L}_A(x,z;\mu) \stackrel{\text{def}}{=} f(x) + \frac{1}{2\mu} \left(\| [Cx - u + \mu z]_+ \|_2^2 - \| \mu z \|_2^2 \right),$$

smoothed shifted penalization

Magnus Hestenes

Michael J.D. Powell

ProxQP solver - method 7/33
Augmented Lagrangian:

$$\mathcal{L}_A(x,z;\mu) \stackrel{\text{def}}{=} f(x) + \frac{1}{2\mu} \left(\| [Cx - u + \mu z]_+ \|_2^2 - \| \mu z \|_2^2 \right),$$

smoothed shifted penalization

Magnus Hestenes

ProxQP solver - method 7/33

Augmented Lagrangian:

$$\mathcal{L}_A(x, z; \mu) \stackrel{\text{def}}{=} f(x)$$

$$+ \frac{1}{2\mu} \left(\| [Cx - u + \mu z]_+ \|_2^2 - \| \mu z \|_2^2 \right),$$
smoothed shifted penalization
M. Hestenes (1969)
M. I. D. Powell (1969)

Method of Multipliers:

$$x^{k+1} \approx_{\epsilon^k} \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \mathcal{L}_A(x, z^k; \mu),$$
$$z^{k+1} = \left[z^k + \frac{1}{\mu} (Cx^{k+1} - u) \right]_+,$$

ProxQP solver - method 7/33

Augmented Lagrangian:

Proximal Augmented Lagrangian:

$$\mathcal{L}_A(x,z;\mu) \stackrel{\text{def}}{=} f(x) + \frac{1}{2\mu} \left(\| [Cx - u + \mu z]_+ \|_2^2 - \| \mu z \|_2^2 \right),$$

smoothed shifted penalization

M. Hestenes (1969) M. J. D. Powell (1969)

Method of Multipliers:

$$x^{k+1} \approx_{\epsilon^k} \operatorname*{arg\,min}_{x \in \mathbb{R}^n} \mathcal{L}_A(x, z^k; \mu),$$
$$z^{k+1} = \left[z^k + \frac{1}{\mu} (Cx^{k+1} - u) \right]_+,$$

$$\Phi_{\rho,\mu}^k(x) \stackrel{\text{def}}{=} \mathcal{L}_A(x, z^k; \mu) + \frac{\rho}{2} \|x - x^k\|_2^2,$$
proximal term

R. Tyrrell Rockafellar

Augmented Lagrangian:

Proximal Augmented Lagrangian:

$$\mathcal{L}_A(x, z; \mu) \stackrel{\text{def}}{=} f(x) \\ + \frac{1}{2\mu} \left(\| [Cx - u + \mu z]_+ \|_2^2 - \| \mu z \|_2^2 \right),$$

smoothed shifted penalization

M. Hestenes (1969) M. J. D. Powell (1969)

Method of Multipliers:

$$x^{k+1} \approx_{\epsilon^k} \operatorname*{arg\,min}_{x \in \mathbb{R}^n} \mathcal{L}_A(x, z^k; \mu),$$
$$z^{k+1} = \left[z^k + \frac{1}{\mu} (Cx^{k+1} - u) \right]_+,$$

$$\Phi_{\rho,\mu}^{k}(x) \stackrel{\text{def}}{=} \mathcal{L}_{A}(x, z^{k}; \mu) + \frac{\rho}{2} \|x - x^{k}\|_{2}^{2},$$
proximal term

R. Tyrrell Rockafellar (1976)

Proximal Method of Multipliers:

$$\begin{aligned} x^{k+1} &\approx_{\epsilon^k} \operatorname{arg\,min}_{x \in \mathbb{R}^n} \Phi^k_{\rho,\mu}(x), \\ z^{k+1} &= \left[z^k + \frac{1}{\mu} (Cx^{k+1} - u) \right]_+, \end{aligned}$$

Augmented Lagrangian:

 $\mathcal{L}_A(x, z; \mu) \stackrel{\text{def}}{=} f(x)$ $+ \frac{1}{2\mu} \left(\| [Cx - u + \mu z]_+ \|_2^2 - \| \mu z \|_2^2 \right),$

smoothed shifted penalization

M. Hestenes M. J. D. Powell (1969) (1969)

Method of Multipliers:

$$x^{k+1} \approx_{\epsilon^k} \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \mathcal{L}_A(x, z^k; \mu),$$
$$z^{k+1} = \left[z^k + \frac{1}{\mu} (Cx^{k+1} - u) \right]_+,$$

Proximal Augmented Lagrangian:

$$\Phi_{\rho,\mu}^k(x) \stackrel{\text{def}}{=} \mathcal{L}_A(x, z^k; \mu) + \frac{\rho}{2} \|x - x^k\|_2^2.$$

proximal term

R. Tyrrell Rockafellar (1976)

Proximal Method of Multipliers:

$$\begin{aligned} x^{k+1} &\approx_{\epsilon^k} \operatorname{arg\,min}_{x \in \mathbb{R}^n} \Phi^k_{\rho,\mu}(x), \\ z^{k+1} &= \left[z^k + \frac{1}{\mu} (Cx^{k+1} - u) \right]_+, \end{aligned}$$

Primal Dual Proximal Augmented Lagrangian:

$$\mathcal{M}^k_{\rho,\mu^k,\alpha}(x,z),$$

Contribution: Merit function numerically more robust

First step of ProxQP:

 $(x^{k+1}, z^{k+1}) \approx_{\epsilon^k} \operatorname*{arg\,min}_{x \in \mathbb{R}^n, z \in \mathbb{R}^m} \mathcal{M}^k_{\rho, \mu^k, \alpha}(x, z),$

ProxQP solver - method 8/33

Augmented Lagrangian:

 $\mathcal{L}_A(x, z; \mu) \stackrel{\text{def}}{=} f(x)$ $+ \frac{1}{2\mu} \left(\| [Cx - u + \mu z]_+ \|_2^2 - \| \mu z \|_2^2 \right),$

smoothed shifted penalization

M. Hestenes M. J. D. Powell (1969) (1969)

Method of Multipliers:

$$x^{k+1} \approx_{\epsilon^k} \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \mathcal{L}_A(x, z^k; \mu),$$
$$z^{k+1} = \left[z^k + \frac{1}{\mu} (Cx^{k+1} - u) \right]_+,$$

Proximal Augmented Lagrangian:

$$\Phi_{\rho,\mu}^k(x) \stackrel{\text{def}}{=} \mathcal{L}_A(x, z^k; \mu) + \frac{\rho}{2} \|x - x^k\|_2^2,$$

proximal term

R. Tyrrell Rockafellar (1976)

Proximal Method of Multipliers:

$$\begin{aligned} x^{k+1} &\approx_{\epsilon^k} \operatorname{arg\,min}_{x \in \mathbb{R}^n} \Phi^k_{\rho,\mu}(x), \\ z^{k+1} &= \left[z^k + \frac{1}{\mu} (Cx^{k+1} - u) \right]_+ \end{aligned}$$

Primal Dual Proximal Augmented Lagrangian:

$$\mathcal{M}^k_{\rho,\mu^k,\alpha}(x,z),$$

Contribution: Merit function numerically more robust

First step of ProxQP:

$$(x^{k+1}, z^{k+1}) \approx_{\epsilon^k} \underset{x \in \mathbb{R}^n, z \in \mathbb{R}^m}{\operatorname{arg\,min}} \mathcal{M}^k_{\rho, \mu^k, \alpha}(x, z)$$
Contribution:

Automatic scheduling of proximal hyperparameters

ProxQP solver - method 8/33

ProxQP algorithm

ProxQP algorithm

ProxQP sub-problem minimization

ProxQP merit function is:

- Strongly convex,
- Piece-wise quadratic,
- Continuously differentiable,
- Semi-smooth.

$$\mathcal{M}_{\rho,\mu^{k},\alpha}^{k}(x,z) \stackrel{\text{def}}{=} f(x) + \frac{\rho}{2} \|x - x^{k}\|_{2}^{2} + \frac{(1-\alpha)\mu^{k}}{2} \|z\|_{2}^{2} + \frac{1}{2\alpha\mu^{k}} \|[Cx - u + \mu^{k}(z^{k} + (\alpha - 1)z)]_{+}\|_{2}^{2},$$

ProxQP sub-problem minimization

ProxQP merit function is:

- Strongly convex,
- Piece-wise quadratic,
- Continuously differentiable,
- Semi-smooth.

$$\mathcal{M}^{k}_{\rho,\mu^{k},\alpha}(x,z) \stackrel{\text{def}}{=} f(x) + \frac{\rho}{2} \|x - x^{k}\|_{2}^{2} + \frac{(1-\alpha)\mu^{k}}{2} \|z\|_{2}^{2} + \frac{1}{2\alpha\mu^{k}} \|[Cx - u + \mu^{k}(z^{k} + (\alpha - 1)z)]_{+}\|_{2}^{2},$$

Minimization using **semi-smooth Newton** with **exact line-search**.

ProxQP sub-problem minimization

ProxQP merit function is:

- Strongly convex,
- Piece-wise quadratic,
- Continuously differentiable,
- Semi-smooth.

$$\mathcal{M}^{k}_{\rho,\mu^{k},\alpha}(x,z) \stackrel{\text{def}}{=} f(x) + \frac{\rho}{2} \|x - x^{k}\|_{2}^{2} + \frac{(1-\alpha)\mu^{k}}{2} \|z\|_{2}^{2} + \frac{1}{2\alpha\mu^{k}} \|[Cx - u + \mu^{k}(z^{k} + (\alpha - 1)z)]_{+}\|_{2}^{2},$$

Minimization using **semi-smooth Newton** with **exact line-search**.

Figure: Linear system error when using $\Phi_{\rho,\mu}^{k}$ (PAL function) v.s., $\mathcal{M}_{\rho,\mu^{k},\alpha}$ (PDAL function) for matrices with increasing ill-conditioning (generated randomly).

Software contribution

License BSD 2-Clause docs online O CI - Linux/OSX/Windows - Cond passing pypi package 0.6.1 Anaconda.org 0.6.1

- ✓ fast: C++ implementation, with homemade linear Cholesky solver
- ✓ scalable: various backends for dense, sparse and matrix-free optimization
- ✓ easy-to-use: API closed to OSQP, Python and Julia bindings
- ✓ open-source: BSD-license, easily installable

- License: BSD-2-Clause
- A Home: https://github.com/simple-robotics/proxsuite
- </>> Development: https://github.com/simple-robotics/proxsuite
- 160860 total downloads
- 🛗 Last upload: 1 month and 25 days ago

⊙ Watch 14 👻 😵 Fork 40 💌 📌 Starred 303	🔹 🚖 Starred 303 🔹
--	-------------------

Summary

PyPI link

https://pypi.org/project/proxsuite

Total downloads

180,196

Total downloads - 30 days

11,791

Total downloads - 7 days

3,257

ProxQP solver - method 11/33

Benchmark setup: solver test set

Method	Name	Backend	Early stopping	Warm start
Active Set	Quadprog	Dense	×	\checkmark
Active Set	QPOASES	Dense	×	1
Interior Point	MOSEK	Sparse	\checkmark	×
Interior Point	QPSWIFT	Sparse	\checkmark	×
ADMM	OSQP	Sparse	\checkmark	\checkmark
ADMM	SCS	Sparse	1	1

Benchmark setup: problems involved

Sparsity	Problem type	Reference	Controlled object	
Dense	Inverse kinematics	tasts-robots, 2023	UR3, UR5, Stretch, Dual KinovaGen2, Sigmaban	ARM,
Dense	SQP	Ferreau et al., 2014	Chain of masses	
Dense	MPC	Wieber, 2006a	Humanoid robot	
Dense	MPC	tasts-robots, 2023	Upkie robot	A Real Provide A Real ProvideA Real ProvideA Real ProvideA Real Provide A Real Pr
Sparse	MPC	Wang & Boyd, 2009	Chain of masses	
Sparse	MPC	Stellato et al., 2020	Synthetic	

Dense QP benchmark

Task name	PROXQP	QUADPROG	OSQP	QPOASES	SCS	QPSWIFT	MOSEK
UR3 IK	13.2±0.1µs	17.0±3.3µs	15.8±0.2µs	21.7±0.3µs	X ¹	$52.2 \pm 1.2 \mu s$	323.1±74µs ²
UR5 IK	$11.9 \pm 0.1 \mu s$	16.8±0.2µs	$16.5 \pm 0.2 \mu s$	21.4±0.2µs	X 1	53.8±0.8µs	310.8±5.3µs ²
DUAL ARMS IK	17.2±0.1µs	23.3±0.2µs	$40.4 \pm 0.6 \mu s$	330.4±5.8µs	81.5±0.6µs	$152.1 \pm 1.1 \mu s$	554.4±25.1µs ²
KINOVAGEN2 IK	15.8±0.1µs	18.9±0.2µs	17.0±0.2µs	31.4±0.4µs	$46.5 \pm 1.3 \mu s$	$53.7 \pm 0.4 \mu s$	375.4±14.9µs ²
SIGMABAN IK	14.1±0.2µs	$25.2 \pm 0.4 \mu s$	45.2±0.9µs	523.6±4.8µs	68.6±0.5µs	224.9±2.0µs	452.5±8.8µs ²
STRETCH IK	26.9±0.3μs	36.7±0.6µs	53.1±0.9µs	$212.6 \pm 0.8 \mu s$	455.3±23.8µs ²	$152.8 \pm 1.5 \mu s$	X 3
CHAIN80 SQP CHAIN80w SQP	15.6±0.3ms 265.7±2.9ms	355.8±0.9ms 610.1±5.7ms	456.5±2.6ms 2141.9±22.4ms	182±2.9ms 467.4±3.3ms ¹	837±16.0ms × ⁴	2193.9±22.3ms × ⁴	1554.6±19.5ms ² 3444.2±30.3ms ²
HUMANOID MPC $\epsilon_{ABS} = 10^{-2}$ HUMANOID MPC $\epsilon_{ABS} = 10^{-4}$ HUMANOID MPC $\epsilon_{ABS} = 10^{-6}$	1.6±0.01ms 2.6±0.02ms 4.4±0.05ms	4.5±1.8ms 4.5±1.8ms 4.5±1.8ms	1.8±0.01ms 2.7±0.03ms 4.4±0.05ms	18.0±5.3ms 18.0±5.3ms 18.0±5.3ms	433.0±21.7ms ⁵ 80.2±2.9ms ⁵ 64.3±2.4ms ⁵	X ³ X ³ X ³	70.7±0.7ms 68.3±0.3ms 69.7±0.8ms

¹ The solver throws a factorization error (of non-convexity). ³ The solver does not manage to satisfy configuration limits.

² The solution does not match the desired accuracy

³ The solver does not manage to satisfy configuration limits. ⁴ The solver does not manage to handle upper bound constraints and outputs infeasibility errors. ⁵ Low accuracy iterates provokes with SCS warm starts more difficult QPs to solve in a closed-loop strategy.

Table: Dense QP benchmarks (average runtime per time-step (IK) and total simulation runtimes).

Sparse QP benchmark

Problem type	Dimensions	PROXQP	QUADPROG	OSQP	QPOASES	SCS	QPSWIFT	MOSEK
	n=76,m=142	5.7±0.2	X ²	6.7±0.7	37.6±23.9	11.9±2.2	13.5±0.5	82.1±3.5 ¹
CONVEX MPC	n=162,m=294	16.4 ± 1.7	\mathbf{X}^2	24.1 ± 6.0	393.9±109.9	51.0 ± 15.7	47.1±4.6	211.5 ± 13.3
$\epsilon_{ m abs} = 10^{-3}$	n=216,m=392	27.6±4.8	\mathbf{X}^2	48.2±29.4	1434.2 ± 480	65.6±30.9	80.0±3.6	311.3 ± 15.4^{1}
	n=270,m=490	43.2±8.3	X ²	77.5±65.6	2345.5 ± 608	104.7 ± 66.0	131.0±7.4	454.2±18.6
	n=76,m=142	8.5±1.4	X ²	14.1±8.4	27.1±15.4	25.5±14.6	16.5±0.7	84.0±3.8 ¹
CONVEX MPC	n=162,m=294	21.1 ± 2.3	X^2	94.0±101.9	452.9±98.3	101.8±47.9	57.8±5.3	216.3 ± 14.1^{1}
$\epsilon_{\rm abs} = 10^{-6}$	n=216,m=392	36.1±4.3	\mathbf{X}^2	150.1 ± 136.0	1626.6 ± 650.1	162.0 ± 95.0	99.5±4.9	314.1 ± 17.4^{1}
	n=270,m=490	57.0±9.0	X ²	346.7 ± 362.0	2670.3 ± 842.4	311.1±122.5	164.1±9.9	459.6 ± 21.0^{1}
Chain of mass $\epsilon_{ m abs} = 10^{-3}$	n=462,m=834	45.2±0.8	(28.3±0.6)E3	59.1±1.7	(80.2±1.6)E3	161.1±11.1	215.3±1.3	566.8±14.1
Chain of mass $\epsilon_{ m abs} = 10^{-6}$	n=462,m=834	67.8±11.1	(28.3±0.6)E3	104.9±9.6	(80.2±1.6)E3	172.6±9.8	248.9±3.1	575.5±16.8 ¹

¹ The solution does not satisfy the desired absolute accuracy. ² QUADPROG cannot solve QPs that are not strictly convex.

Table: Sparse convex MPC benchmark (total runtimes in ms for solving 100 simulation steps).

Robustness to perturbations

Experiment: Controlling the lateral center-of-mass trajectory (blue) to maintain the ZMP (red) within the real support polygon (dotted dark green and blue). Light dotted lines are more conservative ZMP bounds.

Image source: S. Caron's blog

Robustness to perturbations

Noise Level	ProxQP	quadprog	OSQP	qpOASES	SCS	qpSWIFT	MOSEK
10.0	$11.9{\pm}9.7\%$	$1.0{\pm}0.2\%$	$1.9{\pm}0.9\%$	$1.0{\pm}0.2\%$	$1.0\pm0.2\%$	$0{\pm}0.0\%$	$1.0{\pm}0.2\%$
5.0	$\textbf{58.38}{\pm}\textbf{36.4\%}$	$1.1{\pm}0.3\%$	$2.1 \pm 1.1\%$	$1.1{\pm}0.3\%$	$1.1 \pm 0.4\%$	$0{\pm}0.0\%$	$1.1{\pm}0.3\%$
1.0	$100{\pm}0.0\%$	$1.4 {\pm} 0.8\%$	$3.5{\pm}2.4\%$	$1.4{\pm}0.8\%$	$1.5 \pm 1.1\%$	$0{\pm}0.0\%$	$1.4 \pm 0.9\%$
0.5	$100{\pm}0.0\%$	$1.8 \pm 1.2\%$	$5.5 \pm 3.8\%$	$1.9 \pm 1.5\%$	$2.1{\pm}1.6\%$	$0{\pm}0.0\%$	$1.8 \pm 1.2\%$
0.1	$100{\pm}0.0\%$	$3.3{\pm}2.6\%$	$51.6 {\pm} 36.7\%$	$4.3 \pm 3.8\%$	$4.9 \pm 4.3\%$	$0{\pm}0.0\%$	$3.3{\pm}2.6\%$
0.05	$100{\pm}0.0\%$	$3.5 {\pm} 3.2\%$	$97.6 {\pm} 13.5\%$	$5.0{\pm}6.9\%$	$7.7 \pm 6.5\%$	$0{\pm}0.0\%$	3.5 ± 3.2
0.01	$100{\pm}0.0\%$	$4.4 \pm 4.4\%$	$100{\pm}0.0\%$	$7.7 \pm 9.8\%$	$60.2 \pm 37.8\%$	$0 \pm 0.0\%$	$4.4 \pm 4.5\%$
10^{-3}	$100{\pm}0.0\%$	$5.0 {\pm} 5.2\%$	$100{\pm}0.0\%$	$11.4 \pm 12.5\%$	$100{\pm}0.0\%$	$0{\pm}0.0\%$	$5.0{\pm}5.2\%$
10^{-4}	$100{\pm}0.0\%$	$5.0 {\pm} 5.2\%$	$100{\pm}0.0\%$	$15.5{\pm}16.8\%$	$100{\pm}0.0\%$	$0{\pm}0.0\%$	$5.0{\pm}5.2\%$
10^{-5}	$100{\pm}0.0\%$	$5.0 \pm 5.2\%$	$100{\pm}0.0\%$	$83.0{\pm}36.5\%$	$99.1 {\pm} 8.9\%$	$0{\pm}0.0\%$	$5.1 \pm 5.3\%$
10^{-7}	$100{\pm}0.0\%$	$5.0{\pm}5.2\%$	$100{\pm}0.0\%$	$100{\pm}0.0\%$	$97{\pm}14.8\%$	$0{\pm}0.0\%$	$44.8 \pm 34.2\%$
10^{-9}	$100{\pm}0.0\%$	$5.0{\pm}5.2\%$	$100{\pm}0.0\%$	$100{\pm}0.0\%$	$100{\pm}0.0\%$	$0{\pm}0.0\%$	$100{\pm}0.0\%$
0.0	$100{\pm}0.0\%$	$100{\pm}0.0\%$	$100{\pm}0.0\%$	$100{\pm}0.0\%$	$100{\pm}0.0\%$	$0{\pm}0.0\%$	$100{\pm}0.0\%$

Table: Humanoid locomotion MPC problems with perturbations (percentage of problems solved).

Test on a real hardware

Model Predictive Control (MPC)

Control trajectory

$$\min_{x_t, u_t} w_T \|x_T - x_{\text{goal}}\|_2^2 + \sum_{t=0}^{T-1} w_x \|x_t - x_{\text{goal}}\|_2^2 + w_u \|u_t\|_2^2,$$
s.t., $x_{t+1} = \mathbf{A}x_t + \mathbf{B}u_t$, Dynamic model
$$- x_{\max} \le x_t \le x_{\max},$$

$$- u_{\max} \le u_t \le u_{\max}.$$
Safety constraints

QPLayer

Antoine Bambade^{1,2} ¹Inria and ENS Paris : Willow and Sierra teams ²École des Ponts Paris Tech

Ph.D defense, 15 January 2024

École des Ponts ParisTech

Objective

 $x_t =$ Center of Mass position, velocity, acceleration

Plan

2. Differentiate through solutions : **QPLayer**

QPLayer - objective

Associated references

Conference articles

 L. Montaud, Q. Le Lidec, AB, V. Petrik, J. Sivic, J. Carpentier. Differentiable collision detection: a randomized smoothing approach. In IEEE: International Conference on Robotics and Automation (ICRA), 2023;

Submitted articles

- **AB**, F. Schramm, A. Taylor, J. Carpentier. Leveraging augmented Lagrangian techniques for differentiating over infeasible quadratic programs in machine learning. In *International Conference on Learning Representations (ICLR)*, 2024;
- W. Jallet, **AB**, F. Schramm, Q. Le Lidec, N. Mansard, J. Carpentier. Notes on Importance Sampling of the first order estimator. Communication iterm submitted in september 2023 to *IEEE Transactions on Robotics (TRO)*;

QPLayer - references

Standard neural network pipeline

Outputs of current learning pipelines are explicit function of the inputs.

Figure: Example of a feedforward neural network.

Quadratic programming layer pipeline

More recent literature considers differentiable optimization problems as layers.

Figure: Example of a Quadratic Programming Layer (with D nonsingular)

QP layers in machine learning

Convex QP layers performs better than a ConvNet for solving Sudokus.

Figure: Example of Sudoku.

Figure: Training and test plots¹.

¹B. Amos, Z. Kolter (2021)

QP layers cons: limited trainable architecture

Figure: a LP layer. Nothing guarantees during training that the vector of 1 lies in the range space of A^t.

Solution outline: ideal pipeline

The closest feasible QP problem: definition

QPLayer - forward pass

25/33

The closest feasible QP problem: solution method

25/33

The closest feasible QP problem: solution method

25/33

$$\min_{x \in \mathbb{R}} f(x) \qquad \qquad G(x, y; H, g, A, b) \stackrel{\text{def}}{=} \begin{bmatrix} Hx + g + A^{\top}y \\ b - Ax \end{bmatrix}.$$

s.t., $Ax = b$.

$$\min_{x \in \mathbb{R}} f(x) \qquad \qquad G(x, y; H, g, A, b) \stackrel{\text{def}}{=} \begin{bmatrix} Hx + g + A^{\top}y \\ b - Ax \end{bmatrix}.$$

s.t., $Ax = b$.

A classical technique: the Implicit Function Theorem.

Let $v^* = (x^*, z^*)^\top$ s.t. $G(x^*, z^*; \theta) = 0$. θ = elements to learn in $\{H, g, A, b\}$.

$$\min_{x \in \mathbb{R}} f(x) \qquad \qquad G(x, y; H, g, A, b) \stackrel{\text{def}}{=} \begin{bmatrix} Hx + g + A^{\top}y \\ b - Ax \end{bmatrix}.$$

s.t., $Ax = b$.

A classical technique: the Implicit Function Theorem.

Let
$$v^{\star} = (x^{\star}, z^{\star})^{\top}$$
 s.t. $G(x^{\star}, z^{\star}; \theta) = 0$.
 θ = elements to learn in $\{H, g, A, b\}$.

$$\frac{\partial G(x^{\star}, z^{\star}; \theta)}{\partial v^{\star}} \begin{bmatrix} \frac{\partial x^{\star}}{\partial \theta} \\ \frac{\partial z^{\star}}{\partial \theta} \end{bmatrix} + \frac{\partial G(x^{\star}, z^{\star}; \theta)}{\partial \theta} = 0.$$

$$\min_{x \in \mathbb{R}} f(x) \qquad \qquad G(x, y; H, g, A, b) \stackrel{\text{def}}{=} \begin{bmatrix} Hx + g + A^{\top}y \\ b - Ax \end{bmatrix},$$

s.t., $Ax = b$.

A classical technique: the Implicit Function Theorem.

Let
$$v^* = (x^*, z^*)^\top$$
 s.t. $G(x^*, z^*; \theta) = 0$.
 θ = elements to learn in $\{H, g, A, b\}$.

$$\left(\frac{\partial x^{\star}}{\partial \theta}, \frac{\partial z^{\star}}{\partial \theta}\right) \in \underset{w}{\operatorname{arg\,min}} \left\| \frac{\partial G(x^{\star}, z^{\star}; \theta)}{\partial v^{\star}} w + \frac{\partial G(x^{\star}, z^{\star}; \theta)}{\partial \theta} \right\|_{2}^{2},$$

A. Agrawal et al. (2019); M. Blondel (2021).

$$\min_{x \in \mathbb{R}} f(x) \qquad \qquad G(x, y; H, g, A, b) \stackrel{\text{def}}{=} \begin{bmatrix} Hx + g + A^{\top}y \\ b - Ax \end{bmatrix}$$

s.t., $Ax = b$.

...?

A classical technique: the Implicit Function Theorem.

Let
$$v^* = (x^*, z^*)^\top$$
 s.t. $G(x^*, z^*; \theta) = 0$.
 θ = elements to learn in $\{H, g, A, b\}$.
 $(\partial x^*, \partial z^*) = \|\partial G(x^*, z^*; \theta) - \partial G(x^*, z^*; \theta)\|$

$$\left(\frac{\partial x^{\star}}{\partial \theta}, \frac{\partial z^{\star}}{\partial \theta}\right) \in \operatorname*{arg\,min}_{w} \left\| \frac{\partial G(x^{\star}, z^{\star}; \theta)}{\partial v^{\star}} w + \frac{\partial G(x^{\star}, z^{\star}; \theta)}{\partial \theta} \right\|_{2}^{2},$$

Contribution:

Extend the technique for the closest feasible QP solutions.

A. Agrawal et al. (2019); M. Blondel (2021).

$$\begin{split} s^{\star}(\theta) &= \arg \min_{s \in \mathbb{R}^{n_i}} \frac{1}{2} \|s\|_2^2 \\ \text{s.t. } x^{\star}(\theta), z^{\star}(\theta) \in \arg \min_{x \in \mathbb{R}^n} \max_{z \in \mathbb{R}^{n_i}_+} L(x, z, s; \theta), \\ \text{with } L(x, z, s; \theta) &\triangleq f(x; \theta) + z^{\top}(C(\theta)x - u(\theta) - s). \end{split}$$

A classical technique: the Implicit Function Theorem.

$$G(x, z, t; \theta) \triangleq \begin{bmatrix} \nabla_x f(x; \theta) + C(\theta)^\top z \\ C(\theta)x - u(\theta) - t \\ [[t]_- + z]_+ - z \\ C(\theta)^\top [t]_+ \end{bmatrix}$$

Contribution:

Extend the technique for the closest feasible QP solutions.

QPLayer - backward pass 26/33
$$\begin{split} s^{\star}(\theta) &= \arg \min_{s \in \mathbb{R}^{n_i}} \frac{1}{2} \|s\|_2^2 \\ \text{s.t. } x^{\star}(\theta), z^{\star}(\theta) \in \arg \min_{x \in \mathbb{R}^n} \max_{z \in \mathbb{R}^{n_i}_+} L(x, z, s; \theta), \\ \text{with } L(x, z, s; \theta) &\triangleq f(x; \theta) + z^{\top}(C(\theta)x - u(\theta) - s). \end{split}$$

A classical technique: the Implicit Function Theorem.

$$G(x, z, t; \theta) \triangleq \begin{bmatrix} \nabla_x f(x; \theta) + C(\theta)^\top z \\ C(\theta)x - u(\theta) - t \\ [[t]_- + z]_+ - z \\ C(\theta)^\top [t]_+ \end{bmatrix}$$

Contribution:

Extend the technique for the closest feasible QP solutions.

The map is **path-differentiable**.

• • • • •

$$s^{\star}(\theta) = \arg \min_{s \in \mathbb{R}^{n_i}} \frac{1}{2} \|s\|_2^2$$

s.t. $x^{\star}(\theta), z^{\star}(\theta) \in \arg \min_{x \in \mathbb{R}^n} \max_{z \in \mathbb{R}^{n_i}_+} L(x, z, s; \theta),$
with $L(x, z, s; \theta) \triangleq f(x; \theta) + z^{\top}(C(\theta)x - u(\theta) - s).$

A classical technique: the Implicit Function Theorem.

$$G(x, z, t; \theta) \triangleq \begin{bmatrix} \nabla_x f(x; \theta) + C(\theta)^\top z \\ C(\theta)x - u(\theta) - t \\ [[t]_- + z]_+ - z \\ C(\theta)^\top [t]_+ \end{bmatrix}$$

The map is **path-differentiable**.
$$\left(\frac{\partial x^*}{\partial \theta}, \frac{\partial z^*}{\partial \theta}\right) \in \arg\min_w \left\|\frac{\partial G(x^*, z^*; \theta)}{\partial v^*}w + \frac{\partial G(x^*, z^*; \theta)}{\partial \theta}\right\|_2^2,$$
$$\Pi \frac{\partial t^*}{\partial \theta} \in \frac{\partial s^*}{\partial \theta}, \text{ with } \Pi \in \partial([.]_+)(t^*).$$

$$s^{\star}(\theta) = \arg \min_{s \in \mathbb{R}^{n_i}} \frac{1}{2} \|s\|_2^2$$

s.t. $x^{\star}(\theta), z^{\star}(\theta) \in \arg \min_{x \in \mathbb{R}^n} \max_{z \in \mathbb{R}^{n_i}_+} L(x, z, s; \theta),$
with $L(x, z, s; \theta) \triangleq f(x; \theta) + z^{\top}(C(\theta)x - u(\theta) - s).$

A classical technique: the Implicit Function Theorem.

$$G(x, z, t; \theta) \triangleq \begin{bmatrix} \nabla_x f(x; \theta) + C(\theta)^\top z \\ C(\theta)x - u(\theta) - t \\ [[t]_- + z]_+ - z \\ C(\theta)^\top [t]_+ \end{bmatrix}$$
The map is **path-differentiable**.

$$\left(\frac{\partial x^*}{\partial \theta}, \frac{\partial z^*}{\partial \theta}\right) \in \arg\min_w \left\|\frac{\partial G(x^*, z^*; \theta)}{\partial v^*}w + \frac{\partial G(x^*, z^*; \theta)}{\partial \theta}\right\|_2^2,$$

$$\Pi \frac{\partial t^*}{\partial \theta} \in \frac{\partial s^*}{\partial \theta}, \text{ with } \Pi \in \partial([.]_+)(t^*).$$
Contribution:
Extend the technique for the closest feasible QP solutions.
The map is **path-differentiable**.
Efficient algorithms to solve these problems.
QPLayer - backward pass 26/33

$$s^{\star}(\theta) = \arg \min_{s \in \mathbb{R}^{n_i}} \frac{1}{2} \|s\|_2^2$$

s.t. $x^{\star}(\theta), z^{\star}(\theta) \in \arg \min_{x \in \mathbb{R}^n} \max_{z \in \mathbb{R}^{n_i}_+} L(x, z, s; \theta),$
with $L(x, z, s; \theta) \triangleq f(x; \theta) + z^{\top}(C(\theta)x - u(\theta) - s).$

Contribution:

QPLayer: A full differentiable pipeline in C++ connected with PyTorch.

A classical technique: the Implicit Function Theorem.

$$G(x, z, t; \theta) \triangleq \begin{bmatrix} \nabla_x f(x; \theta) + C(\theta)^\top z \\ C(\theta) x - u(\theta) - t \\ [[t]_- + z]_+ - z \\ C(\theta)^\top [t]_+ \end{bmatrix}$$
The map is **path-differentiable**.

$$\left(\frac{\partial x^*}{\partial \theta}, \frac{\partial z^*}{\partial \theta}\right) \in \underset{w}{\operatorname{arg\,min}} \left\|\frac{\partial G(x^*, z^*; \theta)}{\partial v^*}w + \frac{\partial G(x^*, z^*; \theta)}{\partial \theta}\right\|_2^2,$$

$$\Pi \frac{\partial t^*}{\partial \theta} \in \frac{\partial s^*}{\partial \theta}, \text{ with } \Pi \in \partial([.]_+)(t^*).$$
Contribution:
Extend the technique for the closest feasible QP solutions.
The map is **path-differentiable**.
Contribution:
Efficient algorithms to solve these problems.
QPLayer - backward pass 26/33

Numerical benchmark: back to the Sodoku problem.

Convex QP layers performs better than a ConvNet for solving Sudokus.

Figure: Example of Sudoku.

Figure: Training and test plots¹.

¹B. Amos, Z. Kolter (2021)

QPLayer - benchmark

Architecture QPLayer-learn A

Architecture OptNet-learn A

Architecture OptNet

Loss comparison

QPLayer - benchmark 31/33

Loss comparison

QPLayer - benchmark

Prediction error comparison

Conclusion

Antoine Bambade^{1,2} ¹Inria and ENS Paris : Willow and Sierra teams ²École des Ponts Paris Tech

Ph.D defense, 15 January 2024

École des Ponts ParisTech

Conclusion

	Optimization	Differentiable optimization		
Methodological contributions	ProxQP algorithm	IFT for closest feasible QPs Extended Conservative Jacobian Methodology for learning new QP layers		
	Augmented Lagrangian based methods			
Software	ProxQP solver ProxSuite library	QPLayer learning pipeline		
Applications	Simulated problems, Real robot	Classic learning tasks (denoising, object recognition, cartpole, Sudoku)		

Conclusion

	Optimization	Differentiable optimization			
Methodological contributions	ProxQP algorithm	IFT for closest feasible QPs Extended Conservative Jacobian Methodology for learning new QP layers			
	Augmented Lagrangian based methods				
Software	ProxQP solver ProxSuite library	QPLayer learning pipeline			
Applications	Simulated problems, Real robot	Classic learning tasks (denoising, object recognition, cartpole, Sudoku)			
Perspectives	Extension of MM property Readjust control with infeasible perturbations Conic solvers, non convex programming	Applications to control for more structured learning Other conic constraints			
		Conclusion 33/33			

Questions ?

École des Ponts ParisTech

VENTEURS DU MONDE NUMÉRIC

Maros Meszaros results

Today, on full test set (sparse backend), ProxQP is second or third.

Low accuracy

Solvers are compared over the whole test set by shifted geometric mean (shm). Lower is better.

	Success rate (%)	Runtime (shm)	Primal residual (shm)	Dual residual (shm)	Duality gap (shm)	Cost error (shm)
clarabel	91.3	1.0	1.8	1086.8	1.0	1.0
cvxopt	42.8	21.8	3.5	3.9	6604.3	7.4
gurobi	16.7	106.5	3.6	23665.7	26882.1	45.5
highs	37.7	20.8	1.8	5.1	5469.8	<mark>8.0</mark>
osqp	21.0	19.7	2.9	3.2	4982.6	11.6
proxqp	78.3	7.9	1.0	1.0	19.6	2.9
SCS	71.0	9.3	31.3	2.2	1.6	4.2

Source: S. Caron's last update qpsolvers benchmark

ProxQP - benchmarks

Maros Meszaros results

Today, on full test set (sparse backend), ProxQP is second or third.

High accuracy

Solvers are compared over the whole test set by shifted geometric mean (shm). Lower is better.

	Success rate (%)	Runtime (shm)	Primal residual (shm)	Dual residual (shm)	Duality gap (shm)	Cost error (shm)
clarabel	61.6	1.0	1.0	742803.1	44.9	1.0
cvxopt	5.8	5.8	1484115.0	126.3	1612205372.0	5.0
gurobi	5.1	19.2	4.3	7166137621.8	9769259351.6	19.8
highs	0.0	3.7	5416.6	884752.7	1987500500.6	3.5
osqp	26.1	11.5	2.8	1.2	3235.1	11.7
proxqp	59.4	2.4	1.4	1.0	5387.0	2.2
SCS	42.8	8.0	2.5	1.0	1.0	7.6

Source: S. Caron's last update qpsolvers benchmark

ProxQP - benchmarks

Exact penalty function approach by Fletcher

 $\min_{x} f(x) \tag{P}$ s.t. $Cx \le u$,

Exact penalty function approach by Fletcher

 $\begin{array}{ll} \min_{x} f(x) & \prod_{x} \\ \text{s.t. } Cx \leq u, & \text{s.} \end{array}$

$$\min_{x,s} f(x) + \frac{1}{2\alpha} \|s\|^2$$
s.t. $Cx \le u + s$, (P(α))

Exact penalty function approach by Fletcher

$$\begin{array}{ll} \min_{x} f(x) & \min_{x,s} f(x) + \frac{1}{2\alpha} \|s\|^2 \\ \text{s.t. } Cx \le u, & \text{s.t. } Cx \le u + s, \end{array} \tag{P}(\alpha)$$

$$\min_{x \in \mathbb{R}^n, y \le u} \|Cx - y\|_2^2, \qquad s^\star \stackrel{\text{def}}{=} Cx^\star - y^\star. \qquad \text{A. Chiche, J-C Gilbert (2016)}$$

Some (known) converging bias of PPA

$$x^{\star} = \operatorname{prox}_{\lambda f}(x^{\star}),$$
$$x^{k+1} = \operatorname{prox}_{\lambda f}(x^{k}),$$

Some (known) converging bias of PPA

$$x^{\star} = \operatorname{prox}_{\lambda f}(x^{\star}),$$
$$x^{k+1} = \operatorname{prox}_{\lambda f}(x^{k}),$$

Güler (1991)

$$y^k \stackrel{\text{\tiny def}}{=} (x^k - x^{k-1})/\lambda \to v \in \overline{R(\partial f)}$$

Some properties of the KKT map used

KKT map for feasible QPs:

$$G(x,z) = \begin{bmatrix} \nabla f(x) + C^{\top}z \\ [Cx - u + z]_{+} - z \end{bmatrix}.$$

Saddle subdifferential:

$$\partial \mathcal{L}(x,z) \stackrel{\text{\tiny def}}{=} \begin{bmatrix} \nabla f(x) + C^{\top} z \\ \partial I_u^{\star}(z) - Cx \end{bmatrix},$$

$$0 \in \partial \mathcal{L}(x^{\star}, z^{\star}) \iff G(x^{\star}, z^{\star}) = 0.$$

-Maximal monotone → can be used for PPA¹,
 -Polyhedral mapping → outer Lipschitz continuous² (key for automatic scheduling).

¹E. K. Ruy, S. Boyd (2016); ²A. L. Dontchev, R. T. Rockafellar (2009)

Outer Lipschitz continuity and PMM

Outer Lipschitz continuity:

 $\exists a > 0, \tau > 0 \text{ s.t., } \|(u,v)\| \le \tau$ \Longrightarrow $\operatorname{dist}_{\partial \mathcal{L}^{-1}(0,0)}(x,z) \le a \|(u,v)\|, \forall (x,z) \in \partial \mathcal{L}^{-1}(u,v)$

Key property of PMM¹:

$$\begin{split} \mu \|(x,z) - P_{\mu}(x,z)\| &\leq \tau \\ \Longrightarrow \\ \operatorname{dist}_{\partial \mathcal{L}^{-1}(0,0)}(P_{\mu}(x,z)) &\leq \frac{a\mu}{\sqrt{1+a^{2}\mu^{2}}} \operatorname{dist}_{\partial \mathcal{L}^{-1}(0,0)}(x,z). \end{split}$$

¹R. T. Rockafellar (1976)

Outer Lipschitz continuity v.s. Lojasiewicz inequality

Outer Lipschitz continuity:

 $\begin{aligned} \exists \ a > 0, \ \tau > 0 \ \text{s.t.}, \ \|(u,v)\| &\leq \tau \\ \implies \\ \text{dist}_{\partial \mathcal{L}^{-1}(0,0)}(x,z) &\leq a \|(u,v)\|, \forall (x,z) \in \partial \mathcal{L}^{-1}(u,v) \end{aligned}$

Lojasiewicz inequality:

 $Z \stackrel{\text{def}}{=}$ zero locus of analytic function f. For any compact set K in domain of f, there exists α, C s.t., $\operatorname{dist}(x, Z)^{\alpha} \leq C|f(x)|.$

More generic growth inequalities¹

 $\exists \delta > 0 : \forall w \in B(0, \delta), \forall z \in T^{-1}(w), |z - T^{-1}(0)| \le F(|w|).$

- 1. F linear (typical QP case)
 - → Linear convergence of PMM (tight bound)
- 2. F power function with order s at least 1
 - → superlinear convergence of order at least s
- 3. F flat neighbourhood of 0 (and non negative)
 - → appropriate stopping criterion (Ar) provides superlinear convergence of order r
- 4. Growth exceeds any linear bounding
 - sublinear convergence

Why using Augmented Lagrangian methods?

OFFE

	Early	Warm	Sparse and	OFFER	
Method Active Set	× × ×	X X V V	Dense Dense Dense Dense Dense Dense	Sub Familly Primal Dual Dual Dual Parametric	SOLVERS GALAHAD QUADPROG DAQP QPNNLS QPOASES
Interior Point	✓	X	Sparse Sparse Dense Sparse Dense Sparse Sparse Sparse Sparse	Primal-Dual Primal-Dual Primal-Dual Primal-Dual Primal-Dual Primal-Dual Primal-Dual Primal-Dual	GUROBI MOSEK CVXOPT ECOS QPSWIFT HPIPM CLARABEL BPMPD OOQP
Augmenteo Lagrangian		>>>> ×	Sparse Sparse Sparse Sparse Sparse	Primal Self Dual embedding MM PMM PDPMM	OSQP SCS LANCELOT QPALM QPDO

ProxQP solver - specifications

$$x_{1}^{*}(\theta), x_{2}^{*}(\theta) = \operatorname{argmin} x_{1} + x_{2}$$
$$x_{1}, x_{2}$$
s.t., $\theta \le x_{1} + x_{2}$
$$1 \le x_{1} \le 2$$
$$1 \le x_{2} \le 2$$
singular

Infeasible LP : $\theta > 2$

$$x_{1}^{*}(\theta), x_{2}^{*}(\theta) = \operatorname{argmin} x_{1} + x_{2}$$
$$x_{1}, x_{2}$$
s.t., $\theta \le x_{1} + x_{2}$
$$1 \le x_{1} \le 2$$
$$1 \le x_{2} \le 2$$

singular

Infeasible LP : $\theta > 2$

Closest feasible LP

$$\begin{array}{c} x_1^{*}(\theta) = 1 + s^{*} \\ x_2^{*}(\theta) = 1 + s^{*} \\ \theta - s^{*} = x_1^{*}(\theta) + x_2^{*}(\theta) \end{array} \right| \begin{array}{c} x_1^{*}(\theta) = (1 + \theta)/3 \\ x_2^{*}(\theta) = (1 + \theta)/3 \end{array}$$

