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• Horizon: « mid term » (i.e., ~years);

• Setup: 

• We consider a fleet of nuclear power plants (of different categories); 

• Their refueling shutdowns are already scheduled (for a few years);

• Question: how to consume their nuclear stock fuels between shutdowns ?

→ Need: an indicator (consume now, or later);

→ Difficulty: ensure anticipation with flexibility;

→ Same question for other types of « fuel » (water, oil etc.);

How is it used ?

• Energy production management; 

• Horizon: « short term » (i.e., ~intra day to a few days);

• Merit order principle: (« smaller usage value is better for production »); 

•  Coverage options for trading; 
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N nuclear power plants labelled by i characterized by

•   : stock at discrete time t 

•   : power at discrete time t (discretized values, different régimes)

           : a possible scenario for the power plants (finite number, M, of them).

• Random prices

• Random outages

           : marginal valorisation of the electric power for i at t.

 

           : gains for the power plant i, starting from a given stock s at t.

We use at t, as usage value signal, an element of                   .
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• Principle
• Stock discretization for some range

• For each plant i at t, compute for each scenario               

• Using finite difference, compute an element of

• Assemble an average over scenarii for estimating  
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• Principle
• Stock discretization for some range

• For each plant i at t, compute for each scenario               

• Using finite difference, compute an element of

• Assemble an average over scenarii for estimating  

• How computing each gains ?
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• American option valuation detour

Reference: Francis A. Longstaff, Eduardo S. Schwartz, Valuing American Options by Simulation: A Simple Least-Squares 
Approach (The Review of Financial Studies) (2001) Vol 14, No 1, pp. 113-147
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• Backward pass details
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• Forward pass details
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• Practionners’ impact
• Some « strange » decisions impacting placement of modulations, stock coverage calculation;

• Mid-term / short-term visions not aligned;
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• Main limitations
• Not exact calculations of « argmax »;

• Practionners’ impact
• Some « strange » decisions impacting placement of modulations, stock coverage calculation;

• Mid-term / short-term visions not aligned;

• Other attempts
• DP calculations for sub-problems
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Fonctionnement d’OSAK

• Notation
• OSAK solves 

For P a path in an acyclic digraph, with feasible resource r(P), and 
final cost cost(r(P))

• OSAK uses a dominance rule between the resources partial 
paths to create a « Pareto front » of paths at each node and 
eliminate dominate paths

• Hypothesis: 

• Feasibility and final cost are deacreasing with respect to 
the resource; i.e. if sub-path r(P) dominates r(Q) then 

• Cost(r(P)) < cost(r(Q))

• If r(P) is infeasible then so is r(Q)

Reference: Resource constrained shortest path algorithm for EDF short-term thermal production planning problem, Markus 
Kruber, Axel Parmentier, Pascal Benchimol



Sink node

Representing a nuclear plant with OSAK

Representing the problem as a graph:
• We start from a given initial stock
• Each node represents a functionning 

point (max power, min power, off) at a 
given time

• Edges represent a transtion of the 
power plant production state

• An edge going to a « higher 
production » node earns more, 
but consumes more stock

• Long edges to off:
• when the plant turns off, it 

has to remain so for a 
minimum duration

• A path represents a feasible 
production profile for the plant, with 
its resource (cost, stock) evolving with 
each edge

Source node t1 t2 t3 t4

Initial stock,
0

Stock consumption,
gains



• Select a given sub-path

t1 t2 t3 t4

Initial stock

Source node

Sink node

Representing a nuclear plant with OSAK



• Select an already constructed sub-path
• Extend it with all possible edges from its 

ending node
• Check resource feasibility here

• Add extended sub-paths to the queuet1 t2 t3 t4

Initial stock

Source node

Sink node

Representing a nuclear plant with OSAK



Pruning: dominance

• When two sub-paths end at the same 
node, compare their resources

• If one dominates the other (ex: current 
gains are higher and current stock is 
higher)

• remove the dominated path
• Otherwise keep both, building a 

pareto front at that node

t1 t2 t3 t4

Initial stock

Source node

Sink node



Pruning: bounding

• A path that reached the sink node 
provides a lower bound to the optimal 
value

• If we have a relaxed way to extend a sub-
path, we can compare it to the lower 
bound and prune paths that can’t beat it

• Solution : do dynamic programming 
with poor discretization in pre-
processing 

t1 t2 t3 t4

Initial stock

Source node

Sink node



Stock

Final gain
• In pratice, a higher stock is not always better

• At the end of the production campaign, a nuclear plant needs 
its stock to be lower than a threshold

• Prohibitive penalty added to the final stock
• That means we loose the domination rule previously 

explained
• Trick : one can « correct » the final gain function to make it 

increasing with the stock, and « compensate » in the production 
gains of edges so that the sum remains the same

Bellman function

« Corrected » gain function
= Bellman function + α x stock

A trick for the dominance rule

Stock consumption,
gains + α x stock consumption

t1 t2 t3 t4

Initial stock,
initial gain = -α x initial stock

Source node

Sink node



Full constraints in the real problem

• We have limited power decreases per day
• Needs an additional resource, i.e. 3 dimensions : current gains, current stock, and 

remaining allowed power decrases
• Minimum up time after powering on

• Needs an additional resource, i.e. 4 dimensions : current gains, current stock, 
remaining allowed power decrases, and remaining time before the plant can turn 
back off

• Minimum down time after powering off
• « Long » edges

• When the stock goes below a certain threshold, only maximum power is possible
• Minimum power and maximum power depend on stock

• minimum power increases after a point, maximum power decreases afterwards
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What do we compare?

Estimated payoffs (Bellman values) for a nuclear plant,

Usage values and production plans behaviors,

Time calculations,

Settings and inputs
• all nuclear plants;

• Stock discretisation: 1 JEPP;

• real production data; 

Methods compared 

• Reference: « Profil » (backward and forward passes using hardcoded production profils)

• Variant: «  Profil+OSAK »: (backward using hard coded profiles; forward pass using OSAK warm started with hard 
coded production profiles)
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Principal Mode (78% of gains) : [0, 3M€]
Right hand side distribution (16% of gains) : [3M€, 29M€]
Left hand side distribution (7% of cases): [-0.06M€, 0M€]      
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Key results

• Better sub-problem resolution provides better decision signals for negligeable supplementary time (about 100M€ for 
extra 4h compute)
• Results can be explained and production profiles generated can be used;
• Trade-off between timing and gains (ongoing calibration)

Next steps

• Ongoing industrialization
• Solution to be presented to « Grand Trophée de la R&D »
• Optimize the backward pass
• Other formulations ?
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Unit commitment problem

We wish to solve

Cost function (power plant i, time step t)

Operational constraint (power 
plant i, time step t)

Offer demand equilibrium at time step t

Notations

• U: power plant set

• T: time step set (over 2 days)

• p: power vector (dimension 5)

• d: demand
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Unit commitment problem

We wish to solve

Operational cost 
(power plant i, time 
step t)

Failure cost at time step t

Operational constraint (power 
plant i, time step t)

Notations

• U: power plant set

• T: time step set (over 2 days)

• p: power vector (dimension 5)

• d: demand
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Unit commitment problem

We wish to solve

Operational cost 
(power plant i, time 
step t)

Failure cost at time step t

Operational constraint (power 
plant i, time step t)

Algorithm « Apogène »

1. Phase 1
1. Bundle method
2. price signal

2. Phase 2
1. Augmented Lagrangian
2. First solutions

3. Phase 3
1. Genetic algorithms
2. Solution polishing
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Unit commitment problem

We wish to solve

Operational cost 
(power plant i, time 
step t)

Failure cost at time step t

Operational constraint (power 
plant i, time step t)

Algorithm « Apogène »

1. Phase 1
1. Bundle method
2. price signal

2. Phase 2
1. Augmented Lagrangian
2. First solutions

3. Phase 3
1. Genetic algorithms
2. Solution polishing
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Unit commitment problem

We wish to solve

Operational cost 
(power plant i, time 
step t)

Failure cost at time step t

Operational constraint (power 
plant i, time step t)

Frontal solve intractable
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General principle

Operational cost 
(power plant i, time 
step t)

Failure cost at time step t

Operational constraint (power 
plant i, time step t)

Frontal solve intractable

Use of a « decomposition » technique 
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Phase 2 algorithm

Notations

•   : a split of constraint Xi

•   :complementary split of Xi

We would like to find solution such that 
p = p̂



2.2 Current algorithm used

39

Phase 2 algorithm Proximal Jacobian ADMM

Notations

•   : a split of constraint Xi

•   :complementary split of Xi
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Phase 2 algorithm Proximal Jacobian ADMM

Notations

•   : a split of constraint Xi

•   :complementary split of Xi

Price signal estimate
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Phase 2 algorithm Proximal Jacobian ADMM

Parameters

• τ : damping term

• ρ : penalization term

• K : proximal term
Price signal estimate

Notations

•   : a split of constraint Xi

•   :complementary split of Xi
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Phase 2 algorithm Proximal Jacobian ADMM

Fully distributed version

Notations

•   : a split of constraint Xi

•   :complementary split of Xi

Parameters

• τ : damping term

• ρ : penalization term

• K : proximal term
Price signal estimate
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Phase 2 algorithm Proximal Jacobian ADMM

Fully distributed version

Notations

•   : a split of constraint Xi

•   :complementary split of Xi

Parameters

• τ : damping term

• ρ : penalization term

• K : proximal term
Price signal estimate
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Phase 2 algorithm Proximal Jacobian ADMM

Fully distributed version

Convergence conditions

• 0 < τ ≤ 1

• 0 < ρ < K

Notations

•   : a split of constraint Xi

•   :complementary split of Xi

Parameters

• τ : damping term

• ρ : penalization term

• K : proximal term
Price signal estimate
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Phase 2 algorithm Proximal Jacobian ADMM

Parameterization used

• τ = 1 : no damping

• ρ = K/2 : penalization term

• K > 0 : proximal term

Fully distributed version

Notations

•   : a split of constraint Xi

•   :complementary split of Xi

Price signal estimate

Convergence conditions

• 0 < τ ≤ 1

• 0 < ρ < K
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Variations experimented

• Automatic calibration techniques

• Acceleration techniques
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Automatic calibration techniques

Current calibration

• ρ et K a strictly increasing interpolation;

• ρ = K / 2;

• τ = 1;
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Automatic calibration techniques

Current calibration

• ρ et K a strictly increasing interpolation;

• ρ = K / 2;

• τ = 1;

« vanilla » Variation: 

• ρ = K / α with α strictly greater than 2;

• τ = 0.95;

• K another interpolation with slower variation;
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Automatic calibration techniques

Vanilla « automatic » technic (inspired from Method of Multipliers based algorithms):

• ρ = K / α with α strictly greater than 2;

• τ = 0.95;

• K another interpolation with slower variation;

• If || pk+1 - p̂k+1 || ≥ 0.95 || pk - p̂k || (at some frequency):

• Incrase ρ (we don’t penalize enough the constraint)

References: 

Birgin, E. G., & Martínez, J. M. (2014). Practical augmented Lagrangian methods for constrained optimization. Society for Industrial and 
Applied Mathematics.
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Automatic calibration techniques

More advanced technic (OSQP like):

• ρ = K / α with α strictly greater than 2;

• τ = 0.95;

• K another interpolation with slower variation;

• If primal residual larger than dual one (at some frequency):

• Incrase ρ (dual converges too quickly)

• If dual residual larger than primal one (at some frequency):

• Decrease ρ (primal converges too quickly)

References: 

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., & Boyd, S. (2020). OSQP: An operator splitting solver for quadratic 
programs. Mathematical Programming Computation, 12(4), 637-672.
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Acceleration techniques

General principle

ADMM based algorithms can be accelerated

Tested technics:

- Over-Relaxation

- Anderson acceleration
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Acceleration techniques

General principle

ADMM based algorithms can be accelerated

Tested technics:

- Over-Relaxation

- Anderson acceleration

Remark:
ADMM converges for 0 < α < 2
• α > 1: over-relaxation
• α < 1: under-relaxation
It has been observed that for α > 1 it goes 
quicker (especially for α=1.6)
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Time discretization: 15 minutes

Vanilla over relaxed automatic calibration - reference

Problematic 
during winter
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Time discretization: 15 minutes

More advanced relaxed automatic calibration - reference
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Key results

• ADMM based algorithms are very powerful; 
• They are very sensitive to the step size calibration;
• New improvements integrated into production;



Merci
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